Euclidean Algorithm GCD

1 ming+
Yuklanmalar
Yoshga oid cheklov
Hamma uchun
Skrinshot
Skrinshot
Skrinshot
Skrinshot
Skrinshot
Skrinshot
Skrinshot
Skrinshot
Skrinshot
Skrinshot
Skrinshot
Skrinshot

Bu ilova haqida

Animated Euclidean Algorithm
Greatest Common Divisor.
Useful to reduce fractions

Visible Euclidean algorithm

GCD, also known as the greatest common factor (gcf), highest common factor (hcf), greatest common measure (gcm), or highest common divisor.

Dynamic and geometric representation of the algorithm.

Recursive algorithm
And Least Common Multiple deduced from GCD:
lcm(a,b) = a*b / gcd(a,b)

Useful to understand the gcd (Euclidean Algorithm) recursive code: (Java)

int gcd(int m, int n){
if(0==n){
return m;
}else{
return gcd(n,m%n);
}
}

Added Geometric visualization.
Algorithm executed by Dandelions coming from the nearby Mathematical Garden

Euclidean Algorithm History:
("The Pulverizer")

The Euclidean algorithm is one of the oldest algorithms in common use.
It appears in Euclid's Elements (c. 300 BC), specifically in Book 7 (Propositions 1–2) and Book 10 (Propositions 2–3).
Centuries later, Euclid's algorithm was discovered independently both in India and in China, primarily to solve Diophantine equations that arose in astronomy and making accurate calendars.
In the late 5th century, the Indian mathematician and astronomer Aryabhata described the algorithm as the "pulverizer", perhaps because of its effectiveness in solving Diophantine equations.

Acknowledgements:
Joan Jareño (Creamat) (Addition of lcm)
Oxirgi yangilanish
26-iyl, 2024

Maʼlumotlar xavfsizligi

Xavfsizlik — dastur ishlab chiquvchilar maʼlumotlaringizni qanday jamlashi va ulashishini tushunishdan boshlanadi. Maʼlumotlar maxfiyligi va xavfsizlik amaliyotlari ilovadan foydalanish, hudud va yoshga qarab farq qilishi mumkin. Bu axborot dastur ishlab chiquvchi tomonidan taqdim etilgan va keyinchalik yangilanishi mumkin.
Tashqi hamkorlarga hech qanday axborot ulashilmagan
Dastur ishlab chiquvchilar axborot ulashilishini qanday aytishi haqida batafsil
Hech qanday maʼlumot jamlanmagan
Dastur ishlab chiquvchilar axborot jamlanishini qanday aytishi haqida batafsil
Google Play “Butun oila uchun” dasturi qoidalariga amal qiladi

Nima yangiliklar

Update to sdk34 Android 14 - Privacy Policy updated

Ilova yuzasidan yordam

Telefon raqami
+34600336495
Dasturchi haqida
Maurici Carbó Jordi
double.struck.capital@gmail.com
C. SAN ANTONI MARIA CLARET 324 46 08041 Barcelona Spain
undefined

nummolt – boshqa ilovalar