Algorithms to Live By

Iqukethe izikhangiso
10+
Okudawunilodiwe
Isilinganiselwa sokuqukethwe
Wonke umuntu
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini

Mayelana nalolu hlelo lokusebenza

📘 Ama-algorithms ongaphila ngawo - (Uhlelo luka-2025–2026)

📚 Ama-Algorithms Okuphila Ngawo (Ushicilelo luka-2025–2026) isisetshenziswa sezemfundo esihlelekile, esisekelwe kusilabhasi esidizayinelwe i-BS/CS, BS/IT, Izitshudeni Zobunjiniyela Besofthiwe, nabafundi abahlose ukuba uchwepheshe be-algorithms. Lolu hlelo lokusebenza luhlinzeka ngamanothi anemininingwane, ama-MCQ, nemibuzo yokusekela ukufunda, ukulungiselela ukuhlolwa, nokulungela inhlolokhono. Ngesakhiwo sesilabhasi esihleleke kahle, abafundi bangathuthukisa amakhono aqinile okuxazulula izinkinga futhi basebenzise imiqondo ye-algorithmic kuzimo zomhlaba wangempela.

Lolu hlobo luhlanganisa okubalulekile ezihlokweni ezithuthukisiwe njengokuma okufanele, ukuhlela, ukugcinwa kwesikhashana, ithiyori yegeyimu, ukungahleliwe, ukucabanga kwe-Bayesian, ukufaka ngokweqile, inethiwekhi, umusa wokubala, nokuningi. Isahluko ngasinye sihlelwe ngokucophelela ukuze sihlanganise ulwazi lwethiyori nemininingwane esebenzayo, okusenza sibe umhlahlandlela obalulekile wabafundi nabafisa uchwepheshe.

---

📂 Izahluko Nezihloko

🔹 Isahluko 1: Ukuma Okufanelekile
- Inkinga kaNobhala
- Umthetho we-37%.
- Ukuhwebelana Phakathi Kokumisa Nokuqhubeka
- Ukuhlola vs. Ukuxhaphaza

🔹 Isahluko 2: I-Explore-Exploit
- Win-Stay, Lose-Shift Heuristic
- Gittins Inkomba
- Thompson Sampling
- Ukulinganisa Ukuhlola Nokuxhashazwa Ezinqumweni Zempilo

🔹 Isahluko 3: Ukuhlunga
- Ukuhlunga ama-algorithms ku-Daily Life
- Isu Elisanda Kusetshenziswa Kamuva (LRU).
- Ukuphathwa Kwenqolobane
- Ukuhlela Ulwazi Ngempumelelo

🔹 Isahluko 4: Ukugcinwa kwesikhashana
- I-Algorithms Yokushintshwa Kwekhasi
- Indawo Yesikhashana
- I-LRU iqhudelana ne-FIFO
- Ukuthuthukisa Inkumbulo kanye Nesitoreji

🔹 Isahluko 5: Ukuhlela
- Umthetho kaBayes
- Ukwenza Okukodwa vs. Ukwenza izinto eziningi
- Isikhathi Esifushane Sokucubungula Okokuqala
- Ukukhululwa
- Ukushisa kanye nokushisa okuphezulu

🔹 Isahluko 6: Umthetho we-Bayes
- Amathuba Okunemibandela
- Ukuchazwa kweBayesian
- Base Rate ukunganakwa
- Ukwenza Izibikezelo Ngaphansi Kokungaqiniseki

🔹 Isahluko 7: Ukugqoka ngokweqile
- Ukwenziwa Okujwayelekile vs. Ukukhumbula
- I-Bias-Variance Tradeoff
- Ukufakwa Kwejika
- Imodeli Eyinkimbinkimbi Nokulula

🔹 Isahluko 8: Ukuphumula
- Ukunciphisa Ukucindezeleka
- Ukwanelisa vs. Ukuthuthukisa
- Ukungabambeki kwekhompyutha
- I-Heuristics Ekuthathweni Kwezinqumo

🔹 Isahluko 9: Inethiwekhi
- Idizayini yephrothokholi
- Ukulawula Ukuminyana
- I-TCP/IP ne-Packet Switching
- Ubulungisa kanye Nempumelelo Ekuxhumaneni

🔹 Isahluko 10: Ukungahleliwe
- Ama-algorithms angahleliwe
- Ukulayisha Ukulinganisa
- Monte Carlo Izindlela
- Iqhaza Lethuba Kusu

🔹 Isahluko 11: Ithiyori yomdlalo
- I-Nash Equilibrium
- Inkinga Yeziboshwa
- I-Mechanism Design
- Ukubambisana kanye Nokuncintisana

🔹 Isahluko 12: Umusa Wokusebenzisa Ikhompyutha
- Ukuncishiswa Kwemithwalo Yengqondo
- Ukubikezela Ukusiza Abanye
- Ukwenza izinqumo zibe lula kwabanye
- Ukudalulwa kolwazi

---

🌟 Kungani Khetha lolu hlelo lokusebenza?
- Ihlanganisa isilabhasi ye-Algorithm ephelele ngefomethi yezemfundo ehlelekile.
- Kufaka phakathi ama-MCQ kanye nemibuzo yokuzijwayeza okusebenzayo.
- Inikeza ukubukezwa okusheshayo nokucaca komqondo okujulile.
- Isiza kumaphrojekthi, izifundo, kanye nokulungiselela inhlolokhono yezobuchwepheshe.
- Yakha izisekelo eziqinile ekucabangeni kwe-algorithmic nasekuthatheni izinqumo.

---

✍ Lolu hlelo lokusebenza liphefumulelwe
Brian Christian, Tom Griffiths, Rajeev Motwani, Prabhakar Raghavan, Fatima M. Albar, Antonie J. Jetter

📥 Landa Manje!
Thola ama-algorithms akho ukuze uphile ngawo (i-2025–2026 Edition) namuhla futhi uqale ukuba yingcweti yama-algorithm ngokuzethemba!
Kubuyekezwe ngo-
Sep 25, 2025

Ukuphepha kwedatha

Ukuphepha kuqala ngokuqonda ukuthi onjiniyela baqoqa futhi babelane kanjani ngedatha yakho. Ubumfihlo bedatha nezinqubo zokuphepha zingahluka kuye ngokusebenzisa kwakho, isifunda, nobudala. Unjiniyela unikeze lolu lwazi futhi angalubuyekeza ngokuhamba kwesikhathi.
Ayikho idatha eyabiwe nezinkampani zangaphandle
Funda kabanzi mayelana nendlela onjiniyela abaveza ngayo ukwabelana
Ayikho idatha eqoqiwe
Funda kabanzi mayelana nokuthi onjiniyela bakuveza kanjani ukuqoqwa
Idatha ibetheliwe lapho ithunyelwa
Idatha ayikwazi ukusulwa

Yini entsha

🚀 Initial Launch of Algorithms to Live By v1.0

✨ What’s Inside:
✅ Complete syllabus covering Algorithms
✅ Interactive MCQs & quizzes for self-assessment and exam prep

🎯 Suitable For:
👩‍🎓 Students of BSCS, BSIT, Software Engineering & Data Science
📘 University & college exams (CS/IT related subjects)
🏆 Test prep for projects, coursework & technical interviews

Start your journey in mastering algorithmic strategies for real-world applications today with Algorithms to Live By v1.0! 🚀