I-Algorithm ye-Animated Euclidean
Ukuhlukaniswa Okuvamile Kunazo Zonke.
Kuwusizo ukunciphisa izingxenyana
I-algorithm ebonakalayo ye-Euclidean
I-GCD, eyaziwa ngokuthi yiyona nto ejwayelekile kunazo zonke (i-gcf), isici esivamile kakhulu (i-hcf), isilinganiso esivamile kakhulu (gcm), noma i-divisor ejwayelekile kunazo zonke.
Ukumelwa kwe-Dynamic nejometri ye-algorithm.
I-algorithm evuselelayo
Futhi ama-Multiple Common Multiple asuka ku-GCD:
lcm (a, b) = a * b / gcd (a, b)
Kuwusizo ukuqonda i-gcd (i-Euclidean Algorithm) ikhodi evuselelayo: (i-Java)
int gcd (int m, int n) {
uma (0 == n) {
buyela m;
} enye {
buyisela i-gcd (n, m% n);
}}
}}
Ukwengezwa kokubukwa kweJomethrikhi.
I-algorithm ebulawa yi-Dandelions evela e-Mathematical Garden eseduzane
Umlando we-Euclidean Algorithm:
("I-Pulverizer")
I-algorithm ye-Euclidean ingenye yama-algorithm endala okusetshenziselwa ngayo.
Kubonakala ku-Euclid Elements (c. 300 BC), ikakhulukazi eNcwadini 7 (Iziphakamiso 1-2) kanye neNcwadi 10 (Iziphakamiso 2-3).
Emakhulwini eminyaka kamuva, i-algorithm ka-Euclid yatholwa ngokuzimela e-India nakwaseChina, ngokuyinhloko ukuxazulula ukulingana kwe-Diophantine okwavela ekutheni i-astronomy futhi yenza amakhalenda alungile.
Ngasekupheleni kwekhulu le-5 leminyaka, isazi sezinkanyezi saseNdiya nesazi sezinkanyezi u-Aryabhata sachaza lo algorithm ngokuthi "pulverizer", mhlawumbe ngenxa yokusebenza kwayo ekuxazululeni ukulinganisa kweDiophantine.
Ukubonga:
UJoan Jareño (i-Creamat) (Ukwengezwa kwe-lcm)
Kubuyekezwe ngo-
Jul 26, 2024