Engineering Maths 1

Iqukethe izikhangiso
3.2
2.53K izibuyekezo
50K+
Okudawunilodiwe
Isilinganiselwa sokuqukethwe
Umuntu omusha
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini

Mayelana nalolu hlelo lokusebenza

Izibalo zobunjiniyela ngalolu hlelo lokusebenza lwamahhala, olubanzi lweselula!

Idizayinelwe izitshudeni zobunjiniyela, lolu hlelo lokusebenza luhlanganisa izihloko ezibalulekile ezingu-80 ngokuningiliziwe, ezisakazwa kuzo zonke izahluko ezingu-5, okulenza libe umngane wakho omkhulu wokufunda, ukubukeza, nokulungiselela izivivinyo noma izingxoxo.

Ngezincazelo ezicacile, imidwebo, izibalo, namafomula, lolu hlelo lokusebenza lunikeza ukuqonda okujulile kwemiqondo ebalulekile yezibalo. Kungakhathaliseki ukuthi ufundela izivivinyo noma udinga ireferensi esheshayo phakathi nomsebenzi ozokwenziwa, lolu hlelo lokusebenza luzokusiza ukuthi ukwazi ngokushesha izihloko ezibucayi.

Izici Eziyinhloko:
Ukufakwa Okuphelele Kwezihloko Ezingu-80: Amanothi anemininingwane, izincazelo, nezibonelo ezihlanganisa zonke izihloko ezibalulekile zeMathematika Yobunjiniyela.

5 Izahluko Eziyakheke Kahle: Okuqukethwe okuhlelelwe ukufunda okuhlelekile.
Sula Imidwebo & Amafomula: Izinsiza-kubona kanye namafomula ezibalo ezibalulekile ukuze kuqondwe kalula.

Ilungiselelwe Ukufunda Ngokushesha: Ilungele ukubuyekezwa kwezivivinyo, izingxoxo, noma njengomhlahlandlela osheshayo.

I-Mobile-Friendly Interface: Idizayinelwe ukuzulazula kalula nokubuka, elungiselelwe amadivayisi eselula.

Isixhumi esibonakalayo esisebenziseka kalula: Okuhlangenwe nakho okusebenziseka kalula okwenza ukufunda kube lula futhi kuphumelele.

Izihloko Ezihlanganisiwe:
Leibnitz Theorem
Izinkinga ku-Leibnitz Theorem
I-Differential Calculus-I
I-Radius of Curvature
I-Radius of Curvature ku-Parametric Form
Izinkinga ku-Radius of Curvature
I-Radius of Curvature ngefomu le-Polar
I-Cauchy's Mean Value Theorem
I-Theorem kaTaylor
Izinkinga ku-Fundamental Theorem
Okuphuma Kuyingxenye
I-Euler-Lagrange Equation
Ukulandela Ijika
Ukushintsha Kwethiyori Eguquguqukayo
Izinkinga ku-Differential Calculus I
Amafomu Anganqunyelwe
Izinkinga kumthetho we-L'Hospital
Amafomu Ahlukahlukene Anganqunyelwe
Izinkinga Kumafomu Ahlukahlukene Anganqunyelwe
Ithiyori kaTaylor Yemisebenzi Yokuguquguquka Okubili
Izinkinga ku-Theorem ka-Taylor
I-Maxima ne-Minima Yemisebenzi Yokuguquguquka Okubili
Izinkinga ku-Maxima kanye ne-Minima Yemisebenzi Yokuguquguquka Okubili
Indlela kaLagrange Yokuphindaphinda Okunganqunyelwe
Izinkinga endleleni yeLagrange
Ama-Polar Curves
Izinkinga kuma-Polar Curves
UJacobian weNguquko
Ukweqisa Kwemisebenzi Yokuguquguquka Okuningana
Izinkinga ku-Differential Calculus II
Izihlanganisi Eziningi
Izinkinga kuma-Multiple Integrals
I-Double Integral Ngokushintsha Uhlelo Lokuhlanganiswa
Izicelo Zendawo kanye Nomthamo
Izinkinga ngezicelo zeNdawo kanye nevolumu
Imisebenzi ye-Beta ne-Gamma
Ubudlelwano Phakathi Kwemisebenzi Ye-Beta ne-Gamma
Izinkinga ku-Beta kanye ne-Gamma Functions
I-Dirichlet Integral
I-Dirichlet Integral ne-Fourier Series
Izinkinga kuma-Dirichlet Integrals
Izinhlanganisela Ezikathathu
Ama-Integrals Amathathu Asebenzisa Izixhumanisi Ze-Cylindrical
Izinkinga kuma-Integrals
Imibuzo Yezinjongo kuma-Integrals
Vector Imisebenzi
I-Vector Line Integral
I-Theorem yeGreen
I-Gauss Divergence Theorem
I-Theorem kaStoke
Ama-Surface kanye ne-Volume Integrals
Izinkinga ku-Integrals Theorem
I-Directional Derivative yeVector
I-Vector Gradient
I-Theorem ye-Line Integral
Izixhumanisi ze-Orthogonal Curvilinear
Ama-Opharetha ahlukene
Ukwehlukana kweVector
I-Curl ye-Vector
Izinkinga kuVector Calculus
Isingeniso sikaMatrices
Izakhiwo zikaMatrices
Ukuphindaphinda kwe-Scalar
Ukuphindaphinda kwe-Matrix
I-Transpose ye-Matrix
I-Nonsingular Matrix
Ifomu le-Echelon le-Matrix
Izinqumo
Izakhiwo Zezinqumo
Uhlelo Lwezibalo Zomugqa
Isixazululo Sesistimu Yomugqa
Isixazululo kusistimu ye-Linear nge-Inverse Method
Izinga kanye ne-Trace ye-Matrix
UCayley-Hamilton Theorem
Ama-Eigenvalues ​​kanye nama-Eigenvectors
Indlela Yokuthola Ama-Eigenvalues ​​nama-Eigenvectors

Kungani Udinga Lolu hlelo lokusebenza:
Ukufakwa Okubanzi: Kungakhathaliseki ukuthi usaqala noma ubuyekeza, lolu hlelo lokusebenza luhlanganisa konke okudingayo ngeMathematika Yobunjiniyela.

Gxila Ezihlokweni Zokuhlolwa: Imiqondo eyinhloko nezihloko zihlanganiswa ngokuningiliziwe ukuze zikusize ulungiselele izivivinyo ngokuzethemba.

Izincazelo Eziningiliziwe: Amanothi ajulile nezibonelo zokuxazulula izinkinga zenza izihloko eziyinkimbinkimbi ziqondeke kalula.

Ilungele Ireferensi Esheshayo: Udinga ukuxubha umqondo? Lolu hlelo lokusebenza lunikeza ukufinyelela okusheshayo kuzo zonke izihloko, lwenza lufaneleke ukubhekisela ngokushesha nezibuyekezo.

Funda Noma Kukuphi: Kwenzelwe ukusetshenziswa kweselula, ukuze ukwazi ukufunda usohambeni, noma nini, noma kuphi.
Kubuyekezwe ngo-
Aga 24, 2025

Ukuphepha kwedatha

Ukuphepha kuqala ngokuqonda ukuthi onjiniyela baqoqa futhi babelane kanjani ngedatha yakho. Ubumfihlo bedatha nezinqubo zokuphepha zingahluka kuye ngokusebenzisa kwakho, isifunda, nobudala. Unjiniyela unikeze lolu lwazi futhi angalubuyekeza ngokuhamba kwesikhathi.
Ayikho idatha eyabiwe nezinkampani zangaphandle
Funda kabanzi mayelana nendlela onjiniyela abaveza ngayo ukwabelana
Ayikho idatha eqoqiwe
Funda kabanzi mayelana nokuthi onjiniyela bakuveza kanjani ukuqoqwa
Idatha ibetheliwe lapho ithunyelwa
Idatha ayikwazi ukusulwa

Izilinganiso nezibuyekezo

3.4
2.51K izibuyekezo