Revised and fully updated, the Second Edition of this textbook offers a comprehensive explanation of the technology and physics of light-emitting diodes (LEDs) such as infrared, visible-spectrum, ultraviolet, and white LEDs made from III–V semiconductors. The elementary properties of LEDs such as electrical and optical characteristics are reviewed, followed by the analysis of advanced device structures. With nine additional chapters, the treatment of LEDs has been vastly expanded, including new material on device packaging, reflectors, UV LEDs, III–V nitride materials, solid-state sources for illumination applications, and junction temperature. Radiative and non-radiative recombination dynamics, methods for improving light extraction, high-efficiency and high-power device designs, white-light emitters with wavelength-converting phosphor materials, optical reflectors, and spontaneous recombination in resonant-cavity structures, are discussed in detail. Fields related to solid-state lighting such as human vision, photometry, colorimetry, and color rendering are covered beyond the introductory level provided in the first edition. The applications of infrared and visible spectrum LEDs in silica fiber, plastic fiber, and free-space communication are also discussed. Semiconductor material data, device design data, and analytic formulae governing LED operation are provided. With exercises, solutions and illustrative examples, this textbook will be of interest to scientists and engineers working on LEDs, and to graduate students in electrical engineering, applied physics, and materials science.

It is beneficial for technical personnel working in the field of microelectronic, optoelectronic, and photonic semiconductor devices to get a good understanding of the physical foundations ofmodern semiconductor devices. Questions that technical personnel may ask are: How areelectrons propagating in the periodic potential of a semiconductor crystal lattice? What are thefoundations of semiconductor heterostructure devices? How does quantum mechanics relateto semiconductor heterostructure devices? This book tries to answer questions such as these.
The book provides a basis for the understanding of modern semiconductor devices that havedimensions in the nanometer range, i.e. comparable to the electron de Broglie wavelength. Classical and semi-classical physics no longer gives a full description of a number of physicalprocesses. The inclusion of quantum mechanical principles becomes mandatory and provides a useful description of many physical processes in electronic, optoelectronic, and photonic heterostructure devices.
The first part of the book (Chapters 1 – 11) teaches quantum-mechanical principles, including the postulates of quantum mechanics, operators, the uncertainty principle, the Schrödinger equation, non-periodic and periodic potentials, quantum wells, and perturbation theory. The second part of the book (Chapters 12 – 20) applies these principles to semiconductor devices and discusses the density of states, semiconductor statistics, carrier concentrations, doping, tunneling, and some aspects of heterostructure devices.
The book may be of particular interest to individuals working in the fields of microelectronics, optoelectronics, and photonics with an educational background in Electrical Engineering, Applied Physics, or Materials Science.
This is the first book to describe thoroughly the many facets of doping in compound semiconductors. Equal emphasis is given to the fundamental materials physics and to the technological aspects of doping.

The author describes various doping techniques, including doping during epitaxial growth, doping by implantation, and doping by diffusion. The key characteristics of all dopants that have been employed in III-V semiconductors are discussed. In addition, general characteristics of dopants are analyzed, including the electrical activity, saturation, amphotericity, autocompensation, and maximum attainable dopant concentration. Redistribution effects are important in semiconductor microstructures. Linear and non-linear diffusion, different microscopic diffusion mechanisms, surface segregation, surface drift, surface migration, impurity-induced disordering, and the respective physical driving mechanisms are illustrated.

Topics related to basic impurity theory include the hydrogenic model for shallow impurities, linear screening, density of states, classical and quantum statistics, the law of mass action, as well as many analytic approximations for the Fermi-Dirac integral for three-, two- and one dimensional systems. The timely topic of highly doped semiconductors, including band tails, impurity bands, bandgap renormalization, the Mott transition, and the Burstein-Moss shift, is discussed as well.

Doping is essential in many semiconductor heterostructures including high-mobility selectively doped heterostructures, quantum well and quantum barrier structures, doping superlattice structures and d-doping structures. Technologically important deep levels are summarized, including Fe, Cr, and the DX-center, the EL2 defect, and rare-earth impurities. The properties of deep levels are presented phenomenologically, including emission, capture, Shockley-Read recombination, the Poole-Frenkel effect, lattice relaxation, and other effects. The final chapter is dedicated to the experimental characterization of impurities.

This book will be of interest to graduate students, researchers and development engineers in the fields of electrical engineering, materials science, physics, and chemistry working on semiconductors. The book may also be used as a text for graduate courses in electrical engineering and materials science.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.