Springer Series in Solid-State Sciences

· · · · · · ·
最新发布日期:2023年8月17日
系列图书
211
图书

关于此电子书系列

The first edition of this book was written in 1961 when I was Morris Loeb Lecturer in Physics at Harvard. In the preface I wrote: "The problem faced by a beginner today is enormous. If he attempts to read a current article, he often finds that the first paragraph refers to an earlier paper on which the whole article is based, and with which the author naturally assumes familiarity. That reference in turn is based on another, so the hapless student finds himself in a seemingly endless retreat. I have felt that graduate students or others beginning research in magnetic resonance needed a book which really went into the details of calculations, yet was aimed at the beginner rather than the expert. " The original goal was to treat only those topics that are essential to an understanding of the literature. Thus the goal was to be selective rather than comprehensive. With the passage of time, important new concepts were becoming so all-pervasive that I felt the need to add them. That led to the second edition, which Dr. Lotsch, Physics Editor of Springer-Verlag, encouraged me to write and which helped launch the Springer Series in Solid-State Sciences. Now, ten years later, that book (and its 1980 revised printing) is no longer available. Meanwhile, workers in magnetic resonance have continued to develop startling new insights.
Principles of Magnetic Resonance: Edition 3
第 1 本图书 · 2013年4月 ·
0.0
The first edition of this book was written in 1961 when I was Morris Loeb Lecturer in Physics at Harvard. In the preface I wrote: "The problem faced by a beginner today is enormous. If he attempts to read a current article, he often finds that the first paragraph refers to an earlier paper on which the whole article is based, and with which the author naturally assumes familiarity. That reference in turn is based on another, so the hapless student finds himself in a seemingly endless retreat. I have felt that graduate students or others beginning research in magnetic resonance needed a book which really went into the details of calculations, yet was aimed at the beginner rather than the expert. " The original goal was to treat only those topics that are essential to an understanding of the literature. Thus the goal was to be selective rather than comprehensive. With the passage of time, important new concepts were becoming so all-pervasive that I felt the need to add them. That led to the second edition, which Dr. Lotsch, Physics Editor of Springer-Verlag, encouraged me to write and which helped launch the Springer Series in Solid-State Sciences. Now, ten years later, that book (and its 1980 revised printing) is no longer available. Meanwhile, workers in magnetic resonance have continued to develop startling new insights.
Principles of Magnetic Resonance: Edition 2
第 1 本图书 · 2013年6月 ·
0.0
It is a source of great pleasure to help launch the new Springer Series in Solid-State Sciences. Some years aga I wrote my book, Principles of Magnetic Resonance. I have been eager to publish a new book concerned with spin temperature, double resonance, and spin-flip line narrowing, topics basic to important trends in present-day magnetic resonance which were not treated in my earlier book. Invitations to lecture in Osaka, Japan, in Leuven, Belgium, and Lausanne, Switzerland, had provided occasion to prepare first drafts of the new topics and to get student feedback. My plans were changed, however, when I learned that Principles of M agnetic Resonance was no longer available. Dr. Lotsch, Physics Editor of Springer-Verlag, and I decided it made sense to combine the new book with a modified old one, thereby continuing to make available a complete text in basic magnetic resonance written with a philosophy of presenting a thorough treatment of a small number of concepts which are key to large areas of magnetic res on an ce. In addition to adding three new chapters, I have added new material to the original chapters, have added two new appendices-one on the use of Bloch equations to describe rate processes, the other on the effect of diffusion on spin echoes-and have augmented the collection of homework problems.
Introduction to Solid-State Theory
第 2 本图书 · 2012年12月 ·
0.0
Introduction to Solid-State Theory is a textbook for graduate students of physics and materials science. It also provides the theoretical background needed by physicists doing research in pure solid-state physics and its applications to electrical engineering. The fundamentals of solid-state theory are based on a description by delocalized and localized states and - within the concept of delocalized states - by elementary excitations. The development of solid-state theory within the last ten years has shown that by a systematic introduction of these concepts, large parts of the theory can be described in a unified way. This form of description gives a "pictorial" formulation of many elementary processes in solids, which facilitates their understanding.
Inelastic Electron Tunneling Spectroscopy: Proceedings of the International Conference, and Symposium on Electron Tunneling University of Missouri-Columbia, USA, May 25–27, 1977
第 4 本图书 · 2012年12月 ·
0.0
Inelastic Electron Tunneling Spectroscop~ or lETS, provides a unique technique for electronically monitoring the vibrational modes of molecul (;5 adsorbed on a metal oxide surface. Since the discovery of the phenomena by JAKLEVIC and LM1BE in 1966, lETS has been developed by a number of scientists as a method for studying the surface chemistry of molecular species adsorbed on aluminum oxide. Recent applications of lETS include investigations of physical and chemical adsorption of hydrocarbons, studies of catalysis by metal particles, detection and identification of trace substances in air and water, and studies of biological molecules and electron damage to such molecules. lETS has been employed to investigate adhesive materials, and studies are currently in prog ress to investigate corrosion species and corrosion inhibitors on aluminum and its alloys. Electronic transitions of molecules have also been studied by lETS. The recent development of the "external doping" technique, whereby molecu lar species can be introduced into fabricated tunnel junctions, opens the door for a vast new array of surface chemical studies by lETS. lETS is rap idly becoming an important tool for the study of surface and interface phe nomena. In addition to its role in surface studies, inelastic tunneling has proved extremely valuable for the study of the electronic properties of thin metallic films, and the recent discovery of light emission from inelastic tunneling promises to be of some importance in the area of device physics.
Fundamentals of Crystal Growth I: Macroscopic Equilibrium and Transport Concepts
第 5 本图书 · 2012年12月 ·
0.0
The intrinsic properties of a solid, i. e. , the properties that result from its specific structure, can be largely modified by crystallographic and chem ical defects. The formation of these defects is governed by the heat and mass transfer conditions which prevail on and near a crystal-nutrient in terface during crystallization. Hence, both the growth of highly perfect crystals and the preparation of samples having predetermined defect-induced (extrinsic) properties require a thorough understanding of the reaction and transport mechanisms that govern crystallization from vapors, solutions and melts. Crystal growth, as a science, is therefore mostly concerned with the chemistry and physics of heat and mass transport in these fluid-solid phase transitions. Solid-solid transitions are, at this time, not widely employed for high quality single-crystal production. Transport concepts are largely built upon equilibrium considerations, i. e. , on thermodynamic and phase equilibrium concepts. Hence to supply a "workable" foundation for the succeeding discussions, this text begins in Chapter 2 with a concise treatment of thermodynamics which emphasizes applications to mate rials preparation. After working through this chapter, the reader should feel at ease with often (particularly among physicists) unfamiliar entities such as chemical potentials, fugacities, activities. etc. Special sections on ther mochemical calculations (and their pitfalls) and compilations of thermochemi cal data conclude the second chapter. Crystal growth can be called. in a wide sense, the science and technology of controlling phase transitions that lead to (single crystalline) solids.
Magnetic Flux Structures in Superconductors
第 6 本图书 · 2013年4月 ·
0.0
The idea for this book originated from an International Conference on Mag netic Structures in Superconductors organized by John R. Clem and the author at Argonne National Laboratory (ANL) in September of 1973. Large parts of the book evolved from lectures given to graduate students at the University of TUbingen during the past three years. It is the purpose of this book to provide an introduction to the many features of magnetic flux structures in superconductors and to discuss the this field. Here, in addition to the static proper recent developments in ties of magnetic flux structures, the time-dependent phenomena represent an important subject including flux flow and the transport effects in supercon ductors. Throughout the book the emphasis is placed on the physical phenom ena and the experimental results. We do not attempt a general introduction to superconductivity. Except for a brief discussion of the Ginzburg-Landau theory, with respect to the theoretical developments we only give an outline and refer to the original papers or other reviews for the detail of the calculations. The book is intended for researchers and graduate students interested in the subject of magnetic flux structures in superconductors. It may serve as supplementary material for a graduate course on low-temperature solid state physics. During recent years technological applications of supercon ducting materials are becoming increasingly important. Here the static and dynamic behavior of magnetic flux structures playa distinguished role. The book may be helpful for people envolved in these engineering aspects of superconductivity.
Magnetic Flux Structures in Superconductors: Extended Reprint of a Classic Text, Edition 2
第 6 本图书 · 2013年3月 ·
0.0
The first edition of this book provided an introduction to the many static and dynamic features of magnetic flux structures in what are now called classical or low-temperature superconductors. It went out of print not long after the discovery of high-temperature superconductors in 1986 by J.G. Bednorz and K.A. Miiller, a discovery which resulted worldwide in an explosive growth of research and development in the field of superconductivity. Because of this upsurge of activities, a strong demand for this book clearly continued. Since the contents of the fourteen chapters of the first edition are still valid and continue to represent a useful introduction into the various subjects, it was felt that a reprinting of these chapters in this second edition would be highly attractive. In this way, the reader is also able to trace the earlier scienti fic developments, themselves constituting important ideas sometimes forgot ten by the new community dealing with high-temperature superconductivity. However, because of the exciting and important recent progress in the field of high-temperature superconductivity, an extensive chapter has been added in this second edition. It provides a summary of the new developments and a discussion of the highlights. Here keywords such as vortex matter, vortex imaging, and half-integer magnetic flux quanta describe surprising new issues.
Green's Functions in Quantum Physics: Edition 3
第 7 本图书 · 2006年8月 ·
0.0
The main part of this book is devoted to the simplest kind of Green's functions, namely the solutions of linear differential equations with a -function source. It is shown that these familiar Green's functions are a powerful tool for obtaining relatively simple and general solutions of basic problems such as scattering and bound-level information. The bound-level treatment gives a clear physical understanding of "difficult" questions such as superconductivity, the Kondo effect, and, to a lesser degree, disorder-induced localization. The more advanced subject of many-body Green's functions is presented in the last part of the book.
Green’s Functions in Quantum Physics: Edition 2
第 7 本图书 · 2013年3月 ·
0.0
In this edition the second and main part of the book has been considerably expanded as to cover important applications of the formalism. In Chap.5 a section was added outlining the extensive role of the tight binding (or equivalently the linear combination of atomic-like orbitals) approach to many branches of solid-state physics. Some additional informa tion (including a table of numerical values) regarding square and cubic lattice Green's functions were incorporated. In Chap.6 the difficult subjects of superconductivity and the Kondo effect are examined by employing an appealingly simple connection to the question of the existence of a bound state in a very shallow potential well. The existence of such a bound state depends entirely on the form of the un perturbed density of states near the end of the spectrum: if the density of states blows up there is always at least one bound state. If the density of states approaches zero continuously, a critical depth (and/or width) of the well must be reached in order to have a bound state. The borderline case of a finite discontinuity (which is very important to superconductivity and the Kondo effect) always produces a bound state with an exponentially small binding energy.
Green’s Functions in Quantum Physics
第 7 本图书 · 2013年4月 ·
0.0
Solitons and Condensed Matter Physics: Proceedings of the Symposium on Nonlinear (Soliton) Structure and Dynamics in Condensed Matter, Oxford, England, June 27–29, 1978
第 8 本图书 · 2012年12月 ·
0.0
Nonl inear ideas of a "sol iton" variety have been a unifying influence on the na tura 1 sci ences for many decades. HO~/ever, thei r uni versa 1 a pprec i at i on in the physics community as a genuine paradigm is very much a current develop ment. All of us who have been associated with this recent wave of enthusiasm were impressed with the variety of applications, their inevitability once the mental contraint of linear normal modes is removed, and above all by the common mathematical structures underpinning applications with quite different (and often novel) physical manifestations. This has certainly been the situ ation in condensed matter, and when, during the Paris Lattice Dynamics Con ference (September 1977), one of us (T.S.) first suggested a condensed matter soliton Meeting, the idea was strongly encouraged. It would provide an opportunity to exhibit the common mathematical problems, illuminate the new contexts, and thereby focus the "subject" of nonlinear physics at this embryonic stage of its evolution. The original conception was to achieve a balance of mathematicians and phy~cis~ such that each would benefit from the other's expertise and out look. In contrast to many soliton Meetings, hO~/ever, a deliberate attempt was made to emphasize physics contexts rather than mathematical details.
Photoferroelectrics
第 9 本图书 · 2012年12月 ·
0.0
Since Valasek's discovery of the ferroelectric properties of Rochelle salt nearly 60 years ago, ferroelectricity has been regarded as one of the tradi tional branches of dielectric physics. It has had important applications in lattice dynamics, quantum electronics, and nonlinear optics. The study of electron processes in ferroelectrics was begun with VUL's investigations of the ferroelectric properties of barium titanate [1.1]. In trinsic and extrinsic optical absorption, band structure, conductivity and photoconductivity, carrier mobility. and transport mechanisms were examined in this compound, and in other perovskite ferroelectric semiconductors. An important discovery was that of the highly photosensitive photoconducting ferroelectrics of type AVBVICVIII (e.g. SbSI) by MERZ et al. in 1962 [1.2,3]. A large number of ferroelectric semiconductors (some photosensitive, some not) are now known, including broad-band materials (e.g. lithium niobate, lithium tantalate, barium and strontium niobate, and type-A~B~I compounds), BI and narrow-band semiconductors (e.g. type_AIVB compounds). A series of improper ferroelectric semiconductors and photosensitive ferroelastics have been discovered, of which Sb 0 I is an example. s 7 Owing to the uncertainty of their band structure, the difficulty in deter mining the nature of the levels, the complexity of alloying, and their gen erally low mobility values, ferroelectrics are rarely of interest regarded as nonlinear semiconductors. The most fruitful approach has been the study of the influence of electrons (especially nonequilibrium electrons) and electron excitations on phase transitions and ferroelectric properties. A large group of phenomena have recently been discovered and investigated.
Phonon Dispersion Relations in Insulators
第 10 本图书 · 2012年12月 ·
0.0
This phonon atlas presents a collection of phonon-dispersion and density-of states curves of more than a hundred insulating crystals. It grew out of an appendix to a handbook article on phonon spectra [2.1J from which it was fin ally separated mainly because this phonon atlas provides a rather self-con tained tool for every scientist who is working in the field of dynamical properties of solids. He often may find it' useful to have a handy documen tation of the experimental phonon dispersion curves which have been measured so far, together with information on calculated dispersion relations and densities of states. The book will be found to be incomplete by readers who are interested not only in phonon frequencies of a specific crystal but would also like to know about related properties such as elastic and dielectric constants. This is, at the present time, beyond the scope of this volume, but the authors would welcome all suggestions and criticism which could be considered for a forth coming edition. Furthermore, we would be pleased to provide interested readers with information about phonon spectra which came to our knowledge after completion of the manuscript. On the other hand, we will be most grateful for all information about phonon dispersion curves which is missing in our collection or new data for further editions.
The Neural Crest and Neural Crest Cells in Vertebrate Development and Evolution: Edition 2
第 11 本图书 · 2008年12月 ·
0.0
A presentation of all aspects of neural crest cell origins (embryological and evolutionary) development and evolution; neural crest cell behavior (migration) and anomalies (neurocristopathies and birth defects) that arise from defective neural crest development. The treatment of development will include discussions of cellular, molecular and genetic aspects of the differentiation and morphogenesis of neural crest cells and structures derived from neural crest cells. The origins of the neural crest in embryology will be discussed using the recent information on the molecular basis of the specification of the neural crest. Also presented are the advances in our understanding of the evolution of jaws from studies on lampreys and of the neural crest from studies on ascidians and amphioxus.
Electron Transport in Compound Semiconductors
第 11 本图书 · 2012年12月 ·
0.0
Discovery of new transport phenomena and invention of electron devices through exploitation of these phenomena have caused a great deal of interest in the properties of compound semiconductors in recent years. Extensive re search has been devoted to the accumulation of experimental results, par ticularly about the artificially synthesised compounds. Significant ad vances have also been made in the improvement of the related theory so that the values of the various transport coefficients may be calculated with suf ficient accuracy by taking into account all the complexities of energy band structure and electron scattering mechanisms. Knowledge about these deve lopments may, however, be gathered only from original research contributions, scattered in scientific journals and conference proceedings. Review articles have been published from time to time, but they deal with one particular material or a particular phenomenon and are written at an advanced level. Available text books on semiconductor physics, do not cover the subject in any detail since many of them were written decades ago. There is, there fore, a definite need for a book, giving a comprehensive account of electron transport in compound semiconductors and covering the introductory material as well as the current work. The present book is an attempt to fill this gap in the literature. The first chapter briefly reviews the history of the developement of compound semiconductors and their applications. It is also an introduction to the contents of the book.
The Physics of Selenium and Tellurium: Proceedings of the International Conference on the Physics of Selenium and Tellurium, Königstein, Fed. Rep. of Germany, May 28–31, 1979
第 13 本图书 · 2012年12月 ·
0.0
Conferences on the Physics of Selenium and Tellurium were held in 1964 in London, 1967 in Montreal, and eight years ago, 1971, in Pont-a-Mousson. The last conference was noteworthy because of two facts: For crystalline Te and Se a high level of results was achieved and, further, it was possible to outline the focal points for continuing research work. These points were mainly to explore. the electronic structure of trigonal Se and Te and of the hypothetic~l cubic limit of these materials. To im plement such study, progress in band structure calculations was necessary. In addition, a consistent analytical description of the bands near the va lence band conduction band gap was required with the aim to understand the semiconducting properties, mainly magnetotransport and magnetooptical ef fects of band electrons and of impurities. Further questions concerned the influence of defects, such as dislocations, on transport properties and, finally, a concluding description of lattice dynamics of trigonal Se and Te, based on theoretical and experimental work, such as neutron diffraction and optical measurements. Besides the listing of this future research program it became obvious that more detailed work on the amorphous state of solids and liquids was necessary in order to improve our knowledge about their crystalline proper ties, growing conditions. and all problems of chemical bonds.
Magnetic Bubble Technology: Edition 2
第 14 本图书 · 2012年12月 ·
0.0
The popularity of the First Edition of this book has been very gratifying. It confirms that there is a genuine need for a text covering the magnetic bubble technology. We are pleased that the readers have found that this book satisfies that need. It has been used as a text for courses in both universities and industry, and as a reference manual by workers active in the field. To meet the need for more copies of the book it seemed preferable to publish a second edition rather than merely a second printing. There has been some significant progress, even in the short time since the initial printing, and we wanted to include that. At the same time we would like to provide the new copies at the lowest possible cost so that they are more easily obtained by students. For this reason the new edition is in soft cover and the recent progress has been described in a final chapter rather than incorporated into the original chapters. This eliminates the expense of resetting and repaging the original text. At the same time up-to-date references have been added and typographical errors have been corrected in the original chapters. It is our hope that this edition will be useful to those with an interest in the fascinating field of magnetic bubbles.
Magnetic Bubble Technology
第 14 本图书 · 2012年12月 ·
0.0
Magnetic bubbles are of interest to engineers because their properties can be used for important practical electronic devices and they are of interest to physicists because their properties are manifestations of intriguing physical principles. At the same time, the fabrication of useful configurations challenges the materials scientists and engineers. A technology of magnetic bubbles has developed to the point where commercial products are being marketed. In addition, new discovery and development are driving this technology toward substantially lower costs and presumably broader application. For all of these reasons there is a need to educate newcomers to this field in universities and in industry. The purpose of this book is to provide a text for a one-semester course that can be taught under headings of Solid State Physics, Materials Science, Computer Technology or Integrated Electronics. It is expected that the student of anyone of these disciplines will be interested in each of the chapters of this book to some degree, but may concentrate on some more than others, depending on the discipline. At the end of each chapter there is a brief summary which will serve as a reminder of the contents of the chapter but can also be read ahead of time to determine the depth of your interest in the chapter.
Organic Molecular Crystals: Their Electronic States
第 16 本图书 · 2012年12月 ·
0.0
This book is based on the results of many years of experimental work by the author and his colleagues, dealing with the electronic properties of organic crystals. E. Silinsh has played a leading role in pOinting out the importance of the polarization energy by an excess carrier, in determining not only the character of the carrier mobility in organic crystals, but in determining the band gap and the nature of the all-important trapping site in these crystals. The one-electron model of electronic conductivity that has been so successful in dealing with inorganic semiconductors is singular ly unsuccessful in rationalizing the unusual physical properties of organic crystals. A many-body theory is required, and the experimental manifestation of this is the central role played by the crystal polarization enerqies in transferring the results obtained with the isolated molecule, to the solid. The careful studies of E. Silinsh in this field have shown tn detail how this polarization energy develops around the excess carrier (and also the hole-electron pair) sitting on a molecular site in the crystal. As with all insulators, trapping sites playa dominant role in reducing the magnitude of ~he current that can theoretically pass through the organic crystal. It is usually the case that these trapping sites are energetically distributed within the forbidden band of the crystal. For many years, an exponential distribution has shown itself to be useful and reasonably correct: However,' E.
The Theory of Magnetism I: Statics and Dynamics
第 17 本图书 · 2012年12月 ·
0.0
Starting with a historical introduction to the study of magnetism - one of the oldest sciences known to man - before considering the most modern theories and observations (magnetic bubbles and soap films, effects of magnetic impurities in metals and spin glasses), this book develops the concepts and the mathematical expertise necessary to understand contemporary research in this field. Magnetic systems are important in technology and applied science, but they are also prototypes of more complex mathematical structures of great importance to theoretical physics. These connections are made repeatedly in this volume. After development of the necessary quantum theory of angular momentum and of interacting electron systems, a number of models which have been successful in the interpretation of experimental results are introduced: the Ising model, the Heisenberg model, the Stoner theory, the Kondo phenomenon, and so on. In the second edition the thorough approach and the main features which made the first edition a popular text have been retained. All important theories are worked out in detail using methods and notation that are uniform throughout. Footnotes and an extensive bibliography provide a guide to the original literature. A number of problems test the reader's skill.