Donald Clayton Spencer was an American mathematician, known for work on deformation theory of structures arising in differential geometry, and on several complex variables from the point of view of partial differential equations. He was born in Boulder, Colorado, and educated at the University of Colorado and MIT.
He wrote a Ph.D. in diophantine approximation under J. E. Littlewood and G.H. Hardy at the University of Cambridge, completed in 1939. He had positions at MIT and Stanford before his appointment in 1950 at Princeton University. There he was involved in a series of collaborative works with Kunihiko Kodaira on the deformation of complex structures, which had some influence on the theory of complex manifolds and algebraic geometry, and the conception of moduli spaces.
He also was led to formulate the d-bar Neumann problem, for the operator
in PDE theory, to extend Hodge theory and the n-dimensional Cauchy–Riemann equations to the non-compact case. This is used to show existence theorems for holomorphic functions.
He later worked on pseudogroups and their deformation theory, based on a fresh approach to overdetermined systems of PDEs.