Isizukulwane Sesithombe Se-Neural, Ukubonwa Kobuso, Ukuhlelwa Kwesithombe, Ukuphendulwa Kwemibuzo...
Ingabe i-smartphone yakho iyakwazi ukusebenzisa ama-Deep Neural Networks akamuva ukwenza le misebenzi neminye eminingi esekelwe ku-AI? Ingabe inayo i-AI Chip ezinikele? Ingabe ishesha ngokwanele? Qalisa i-AI Benchmark ukuze uhlole ngobungcweti Ukusebenza kwayo kwe-AI!
Izinga lefoni lamanje: http://ai-benchmark.com/ranking
I-AI Benchmark ikala isivinini, ukunemba, ukusetshenziswa kwamandla kanye nezidingo zenkumbulo zokhiye abambalwa be-AI, i-Computer Vision kanye namamodeli e-NLP. Phakathi kwezixazululo ezihloliwe kukhona Ukuhlelwa Kwezithombe kanye nezindlela Zokuqashelwa Kobuso, amamodeli e-AI enza isithombe se-neural nokukhiqizwa kombhalo, amanethiwekhi e-neural asetshenziselwa i-Image/Video Super-Resolution kanye Nokuthuthukisa Isithombe, kanye nezixazululo ze-AI ezisetshenziswa ezinhlelweni zokushayela ezizimele nama-smartphones ngokoqobo- isikhathi Ukulinganisa Ukujula kanye Semantic Image Segmentation. Ukubonakala kwemiphumela yama-algorithms kuvumela ukuhlola imiphumela yawo ngemidwebo kanye nokwazi isimo samanje sezobuciko emikhakheni ehlukahlukene ye-AI.
Sekukonke, i-AI Benchmark iqukethe izivivinyo ezingama-83 nezigaba ezingama-30 ezibalwe ngezansi:
Isigaba 1. Ukuhlelwa, i-MobileNet-V3
Isigaba 2. Ukuhlelwa, Ukuqaliswa-V3
Isigaba 3. Ukubonwa kobuso, i-Swin Transformer
Isigaba 4. Ukuhlelwa, I-EfficientNet-B4
Isigaba 5. Ukuhlelwa, i-MobileViT-V2
Izigaba 6/7. Ukwenziwa Kwemodeli Ehambisanayo, 8 x Ukuqaliswa-V3
Isigaba 8. Ukulandelelwa Kwezinto, YOLO-V8
Isigaba 9. I-Optical Character Recognition, i-ViT Transformer
Isigaba 10. Semantic Segmentation, DeepLabV3+
Isigaba 11. I-Parallel Segmentation, 2 x DeepLabV3+
Isigaba 12. Isegimenti Semantic, Ingxenye Noma yini
Isigaba 13. Ukufiphaliswa Kwezithombe, IMDN
Isigaba 14. Image Super-Resolution, ESRGAN
Isigaba 15. Image Super-Resolution, SRGAN
Isigaba 16. Ukuhlehla Kwezithombe, i-U-Net
Isigaba 17. Ukulinganisa Ukujula, i-MV3-Ukujula
Isigaba 18. Ukulinganisa Ukujula, MiDaS 3.1
Isigaba 19/20. Ukuthuthukiswa Kwesithombe, DPED
Isigaba 21. I-ISP yekhamera efundiwe, i-MicroISP
Isigaba 22. I-Bokeh Effect Rendering, i-PyNET-V2 Mobile
Isigaba 23. I-FullHD Video Super-Resolution, XLSR
Isigaba 24/25. I-4K Video Super-Resolution, VideoSR
Isigaba 26. Ukuphendulwa Kwemibuzo, MobileBERT
Isigaba 27. I-Neural Text Generation, Llama2
Isigaba 28. I-Neural Text Generation, GPT2
Isigaba 29. I-Neural Image Generation, Ukusabalalisa Okuzinzile V1.5
Isigaba 30. Imikhawulo Yenkumbulo, ResNet
Ngaphandle kwalokho, umuntu angalayisha futhi ahlole amamodeli abo okufunda okujulile e-TensorFlow Lite Kumodi ye-PRO.
Incazelo enemininingwane yokuhlolwa ingatholakala lapha: http://ai-benchmark.com/tests.html
Qaphela: Ukusheshiswa kwezingxenyekazi zekhompuyutha kusekelwa kuwo wonke ama-SoC eselula anama-NPU azinikele nezisheshisi ze-AI, okuhlanganisa i-Qualcomm Snapdragon, MediaTek Dimensity / Helio, Google Tensor, HiSilicon Kirin, Samsung Exynos, kanye nama-chipsets e-UNISOC Tiger. Kusukela ku-AI Benchmark v4, umuntu angakwazi futhi ukunika amandla ukusheshisa kwe-AI okusekelwe ku-GPU kumadivayisi amadala kuzilungiselelo ("Sheshisa" -> "Vumela Ukusheshisa kwe-GPU" / "Arm NN", i-OpenGL ES-3.0+ iyadingeka).
Kubuyekezwe ngo-
Sep 21, 2025