Boolean simplifier

Contiene anuncios
10 k+
Descargas
Calificación del contenido
Apto para todo público
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla
Imagen de la captura de pantalla

Acerca de esta app

esta es la aplicación de vista web de "https://www.boolean-algebra.com"
Postulado booleano, propiedades y teoremas
Los siguientes postulados, propiedades y teoremas son válidos en álgebra booleana y se utilizan para simplificar expresiones o funciones lógicas:

Los POSTULADOS son verdades evidentes.

1a: $ A = 1 $ (si A ≠ 0) 1b: $ A = 0 $ (si A ≠ 1)
2a: $ 0 ∙ 0 = 0 $ 2b: $ 0 + 0 = 0 $
3a: $ 1 ∙ 1 = 1 $ 3b: $ 1 + 1 = 1 $
4a: $ 1 ∙ 0 = 0 $ 4b: $ 1 + 0 = 1 $
5a: $ \ overline {1} = 0 $ 5b: $ \ overline {0} = 1 $
Las PROPIEDADES que son válidas en el álgebra de Boole son similares a las del álgebra ordinaria

Conmutativo $ A ∙ B = B ∙ A $ $ A + B = B + A $
Asociativo $ A ∙ (B ∙ C) = (A ∙ B) ∙ C $ $ A + (B + C) = (A + B) + C $
Distributivo $ A ∙ (B + C) = A ∙ B + A ∙ C $ $ A + (B ∙ C) = (A + B) ∙ (A + C) $
Los TEOREMAS que se definen en Álgebra de Boole son los siguientes:

1a: $ A ∙ 0 = 0 $ 1b: $ A + 0 = A $
2a: $ A ∙ 1 = A $ 2b: $ A + 1 = 1 $
3a: $ A ∙ A = A $ 3b: $ A + A = A $
4a: $ A ∙ \ overline {A} = 0 $ 4b: $ A + \ overline {A} = 1 $
5a: $ \ overline {\ overline {A}} = A $ 5b: $ A = \ overline {\ overline {A}} $
6a: $ \ overline {A ∙ B} = \ overline {A} + \ overline {B} $ 6b: $ \ overline {A + B} = \ overline {A} ∙ \ overline {B} $
Al aplicar postulados, propiedades y / o teoremas booleanos, podemos simplificar expresiones booleanas complejas y construir un diagrama de bloques lógicos más pequeño (circuito menos costoso).

Por ejemplo, para simplificar $ AB (A + C) $ tenemos:

$ AB (A + C) $ ley distributiva
= $ ABA + ABC $ ley acumulativa
= $ AAB + ABC $ teorema 3a
= $ AB + ABC $ ley distributiva
= $ AB (1 + C) $ teorema 2b
= $ AB1 $ teorema 2a
= $ AB $
Aunque lo anterior es todo lo que necesita para simplificar una ecuación booleana. Puede utilizar una extensión de los teoremas / leyes para facilitar la simplificación. Lo siguiente reducirá la cantidad de pasos necesarios para simplificar, pero será más difícil de identificar.

7a: $ A ∙ (A + B) = A $ 7b: $ A + A ∙ B = A $
8a: $ (A + B) ∙ (A + \ overline {B}) = A $ 8b: $ A ∙ B + A ∙ \ overline {B} = A $
9a: $ (A + \ overline {B}) ∙ B = A ∙ B $ 9b: $ A ∙ \ overline {B} + B = A + B $
10: $ A⊕B = \ overline {A} ∙ B + A ∙ \ overline {B} $
11: $ A⊙B = \ overline {A} ∙ \ overline {B} + A ∙ B $
⊕ = XOR, ⊙ = XNOR
Ahora, usando estos nuevos teoremas / leyes, podemos simplificar la expresión anterior de esta manera.

Para simplificar $ AB (A + C) $ tenemos:

$ AB (A + C) $ ley distributiva
= $ ABA + ABC $ ley acumulativa
= $ AAB + ABC $ teorema 3a
= $ AB + ABC $ teorema 7b
Actualización
3 nov 2021

Seguridad de los datos

El primer paso de la seguridad es comprender cómo los desarrolladores recopilan y comparten tus datos. Las prácticas de privacidad y seguridad de datos pueden variar en función del uso de la app, la región y la edad. El desarrollador proporcionó esta información y podría actualizarla con el tiempo.
No se comparten datos con terceros
Más información sobre cómo los desarrolladores declaran el uso compartido
No se recopilan datos
Más información sobre cómo los desarrolladores declaran la recopilación

Novedades

Frist Release

Asistencia de la app

Número de teléfono
+94701675563
Acerca del desarrollador
Uththama wadu Sajith Tiyenshan
stiyenshan@gmail.com
419/1 rajakanda polpithigama Kurunegala 60620 Sri Lanka
undefined

Más de sajith tiyenshan

Apps similares