Boolean simplifier

Iqukethe izikhangiso
10K+
Okudawunilodiwe
Isilinganiselwa sokuqukethwe
Wonke umuntu
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini

Mayelana nalolu hlelo lokusebenza

lolu uhlelo lokusebenza lokubuka iwebhu lwe-"https://www.boolean-algebra.com"
I-Boolean Postulate, Properties, kanye namathiyori
I-postulate elandelayo, izakhiwo, kanye nethiyori kuvumelekile ku-Boolean Algebra futhi kusetshenziselwa ukwenza lula izinkulumo ezinengqondo noma imisebenzi:

AMA-POSTULATE angamaqiniso asobala.

1a: $A=1$ (uma A ≠ 0) 1b: $A=0$ (uma A ≠ 1)
2a: $0∙0=0$ 2b: $0+0=0$
3a: $1∙1=1$ 3b: $1+1=1$
4a: $1∙0=0$ 4b: $1+0=1$
5a: $\overline{1}=0$ 5b: $\overline{0}=1$
IZIMPILO ezisebenzayo ku-Boolean Algebra ziyafana nalezo eziku-algebra evamile

I-$A∙B=B∙A$ $A+B=B+A$
I-Associative $A∙(B∙C)=(A∙B)∙C$A+(B+C)=(A+B)+C$
Ukusabalalisa $A∙(B+C)=A∙B+A∙C$ $A+(B∙C)=(A+B)∙(A+C)$
IZIHLOKO ezichazwe ku-Boolean Algebra yile elandelayo:

1a: $A∙0=0$ 1b: $A+0=A$
2a: $A∙1=A$2b: $A+1=1$
3a: $A∙A=A$3b: $A+A=A$
4a: $A∙\overline{A}=0$ 4b: $A+\overline{A}=1$
5a: $\overline{\overline{A}}=A$5b: $A=\overline{\overline{A}}$
6a: $\overline{A∙B}=\overline{A}+\overline{B}$ 6b: $\overline{A+B}=\overline{A}∙\overline{B}$
Ngokusebenzisa i-Boolean postulates, izakhiwo kanye/noma ithiyori singenza lula izisho ze-Boolean eziyinkimbinkimbi futhi sakhe idayagramu yebhulokhi elinengqondo elincane (isifunda esingabizi kakhulu).

Isibonelo, ukwenza lula i-$AB(A+C)$ sine:

$AB(A+C)$ umthetho wokusabalalisa
=$ABA+ABC$ umthetho oqongelelekayo
=$AAB+ABC$ theorem 3a
=$AB+ABC$ umthetho wokusabalalisa
=$AB(1+C)$ theorem 2b
=$AB1$ theorem 2a
=$AB$
Nakuba lokhu okungenhla yikho konke okudingayo ukuze wenze lula i-Boolean equation. Ungasebenzisa isandiso sethiyori/imithetho ukwenza kube lula ukwenza lula. Okulandelayo kuzonciphisa inani lezinyathelo ezidingekayo ukuze kube lula kodwa kuzoba nzima kakhulu ukuzibona.

7a: $A∙(A+B)=A$ 7b: $A+A∙B=A$
8a: $(A+B)∙(A+\overline{B})=A$8b: $A∙B+A∙\overline{B}=A$
9a: $(A+\overline{B})∙B=A∙B$ 9b: $A∙\overline{B}+B=A+B$
10: $A⊕B=\phezu kwe-inthanethi{A}∙B+A∙\phezu kwe-inthanethi{B}$
11: $A⊙B=\ngaphezulu{A}∙\ngaphezulu{B}+A∙B$
⊕ = XOR, ⊙ = XNOR
Manje sisebenzisa le theory/mithetho emisha singenza lula inkulumo yangaphambili kanje.

Ukuze senze i-$AB(A+C)$ ibe lula sine:

$AB(A+C)$ umthetho wokusabalalisa
=$ABA+ABC$ umthetho oqongelelekayo
=$AAB+ABC$ theorem 3a
=$AB+ABC$ theorem 7b
Kubuyekezwe ngo-
Nov 4, 2021

Ukuphepha kwedatha

Ukuphepha kuqala ngokuqonda ukuthi onjiniyela baqoqa futhi babelane kanjani ngedatha yakho. Ubumfihlo bedatha nezinqubo zokuphepha zingahluka kuye ngokusebenzisa kwakho, isifunda, nobudala. Unjiniyela unikeze lolu lwazi futhi angalubuyekeza ngokuhamba kwesikhathi.
Ayikho idatha eyabiwe nezinkampani zangaphandle
Funda kabanzi mayelana nendlela onjiniyela abaveza ngayo ukwabelana
Ayikho idatha eqoqiwe
Funda kabanzi mayelana nokuthi onjiniyela bakuveza kanjani ukuqoqwa

Yini entsha

Frist Release