Boolean simplifier

ืžื›ื™ืœ ืžื•ื“ืขื•ืช
+10Kโ€
ื”ื•ืจื“ื•ืช
ืกื™ื•ื•ื’ ืชื•ื›ืŸ
ื›ื•ืœื
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš
ืฆื™ืœื•ื ืžืกืš

ืžื™ื“ืข ืขืœ ื”ืืคืœื™ืงืฆื™ื” ื”ื–ื•

ื–ื•ื”ื™ ืืคืœื™ืงืฆื™ื™ืช ืชืฆื•ื’ืช ืื™ื ื˜ืจื ื˜ ืฉืœ "https://www.boolean-algebra.com"
ืขืžื“ื” ื‘ื•ืœื™ืื ื™ืช, ืžืืคื™ื™ื ื™ื ื•ืžืฉืคื˜ื™ื
ื”ื”ื ื—ื”, ื”ืžืืคื™ื™ื ื™ื ื•ื”ืžืฉืคื˜ื™ื ื”ื‘ืื™ื ืชืงืคื™ื ื‘ืืœื’ื‘ืจื” ื‘ื•ืœื™ืื ื™ืช ื•ืžืฉืžืฉื™ื ืœืคื™ืฉื•ื˜ ืฉืœ ื‘ื™ื˜ื•ื™ื™ื ืื• ืคื•ื ืงืฆื™ื•ืช ืœื•ื’ื™ื•ืช:

ืคื•ืกื˜ื•ืœื˜ื™ื ื”ื ืืžื™ืชื•ืช ื‘ืจื•ืจื•ืช ืžืืœื™ื”ืŸ.

1a: $A=1$ (ืื A โ‰  0) 1b: $A=0$ (ืื A โ‰  1)
2a: $0โˆ™0=0$ 2b: $0+0=0$
3a: $1โˆ™1=1$ 3b: $1+1=1$
4a: $1โˆ™0=0$ 4b: $1+0=1$
5a: $\overline{1}=0$ 5b: $\overline{0}=1$
ืžืืคื™ื™ื ื™ื ืฉืชืงืคื™ื ื‘ืืœื’ื‘ืจื” ื‘ื•ืœื™ืื ื™ืช ื“ื•ืžื™ื ืœืืœื• ืฉื‘ืืœื’ื‘ืจื” ืจื’ื™ืœื”

ืงื•ืžื•ื˜ื˜ื™ื‘ื™ $Aโˆ™B=Bโˆ™A$ $A+B=B+A$
ืืกื•ืฆื™ืื˜ื™ื‘ื™ $Aโˆ™(Bโˆ™C)=(Aโˆ™B)โˆ™C$ $A+(B+C)=(A+B)+C$
ื—ืœื•ืงืช $Aโˆ™(B+C)=Aโˆ™B+Aโˆ™C$ $A+(Bโˆ™C)=(A+B)โˆ™(A+C)$
ืžืฉืคื˜ื™ื ื”ืžื•ื’ื“ืจื™ื ื‘ืืœื’ื‘ืจื” ื‘ื•ืœื™ืื ื™ืช ื”ื ื”ื‘ืื™ื:

1a: $Aโˆ™0=0$ 1b: $A+0=A$
2a: $Aโˆ™1=A$ 2b: $A+1=1$
3a: $Aโˆ™A=A$ 3b: $A+A=A$
4a: $Aโˆ™\overline{A}=0$ 4b: $A+\overline{A}=1$
5a: $\overline{\overline{A}}=A$ 5b: $A=\overline{\overline{A}}$
6a: $\overline{Aโˆ™B}=\overline{A}+\overline{B}$ 6b: $\overline{A+B}=\overline{A}โˆ™\overline{B}$
ืขืœ ื™ื“ื™ ื™ื™ืฉื•ื ื”ื ื—ื•ืช, ืžืืคื™ื™ื ื™ื ื•/ืื• ืžืฉืคื˜ื™ื ื‘ื•ืœื™ืื ื™ื™ื ื ื•ื›ืœ ืœืคืฉื˜ ื‘ื™ื˜ื•ื™ื™ื ื‘ื•ืœื™ืื ื™ื™ื ืžื•ืจื›ื‘ื™ื ื•ืœื‘ื ื•ืช ื“ื™ืื’ืจืžืช ื‘ืœื•ืงื™ื ืœื•ื’ื™ืช ืงื˜ื ื” ื™ื•ืชืจ (ืžืขื’ืœ ืคื—ื•ืช ื™ืงืจ).

ืœื“ื•ื’ืžื”, ื›ื“ื™ ืœืคืฉื˜ ืืช $AB(A+C)$ ื™ืฉ ืœื ื•:

ื—ื•ืง ื—ืœื•ืงืชื™ ืฉืœ $AB(A+C)$
=$ABA+ABC$ ื—ื•ืง ืžืฆื˜ื‘ืจ
=$AAB+ABC$ ืžืฉืคื˜ 3ื
=$AB+ABC$ ื—ื•ืง ื—ืœื•ืงืชื™
=$AB(1+C)$ ืžืฉืคื˜ 2ื‘
=$AB1$ ืžืฉืคื˜ 2ื
=$AB$
ืœืžืจื•ืช ืฉืืžื•ืจ ืœืขื™ืœ ื”ื•ื ื›ืœ ืžื” ืฉืืชื” ืฆืจื™ืš ื›ื“ื™ ืœืคืฉื˜ ืžืฉื•ื•ืื” ื‘ื•ืœื™ืื ื™ืช. ืืชื” ื™ื›ื•ืœ ืœื”ืฉืชืžืฉ ื‘ื”ืจื—ื‘ื” ืฉืœ ื”ืžืฉืคื˜ื™ื/ื—ื•ืงื™ื ื›ื“ื™ ืœื”ืงืœ ืขืœ ื”ืคืฉื˜ื•ืช. ื”ืคืขื•ืœื•ืช ื”ื‘ืื•ืช ื™ืฆืžืฆืžื• ืืช ื›ืžื•ืช ื”ืฆืขื“ื™ื ื”ื ื“ืจืฉื™ื ืœืคื™ืฉื•ื˜, ืืš ื™ื”ื™ื” ืงืฉื” ื™ื•ืชืจ ืœื–ื”ื•ืช.

7a: $Aโˆ™(A+B)=A$7b: $A+Aโˆ™B=A$
8a: $(A+B)โˆ™(A+\overline{B})=A$8b: $Aโˆ™B+Aโˆ™\overline{B}=A$
9a: $(A+\overline{B})โˆ™B=Aโˆ™B$ 9b: $Aโˆ™\overline{B}+B=A+B$
10: $AโŠ•B=\overline{A}โˆ™B+Aโˆ™\overline{B}$
11: $AโŠ™B=\overline{A}โˆ™\overline{B}+Aโˆ™B$
โŠ• = XOR, โŠ™ = XNOR
ื›ืขืช ื‘ืืžืฆืขื•ืช ืžืฉืคื˜ื™ื/ื—ื•ืงื™ื ื—ื“ืฉื™ื ืืœื• ื ื•ื›ืœ ืœืคืฉื˜ ืืช ื”ื‘ื™ื˜ื•ื™ ื”ืงื•ื“ื ื›ืš.

ื›ื“ื™ ืœืคืฉื˜ ืืช $AB(A+C)$ ื™ืฉ ืœื ื•:

ื—ื•ืง ื—ืœื•ืงืชื™ ืฉืœ $AB(A+C)$
=$ABA+ABC$ ื—ื•ืง ืžืฆื˜ื‘ืจ
=$AAB+ABC$ ืžืฉืคื˜ 3ื
=$AB+ABC$ ืžืฉืคื˜ 7ื‘
ืขื“ื›ื•ืŸ ืื—ืจื•ืŸ ื‘ืชืืจื™ืš
4 ื‘ื ื•ื‘ืณ 2021

ืื‘ื˜ื—ืช ื ืชื•ื ื™ื

ื›ื“ื™ ืœืฉืžื•ืจ ืขืœ ื”ื‘ื˜ื™ื—ื•ืช ืฆืจื™ืš ืงื•ื“ื ื›ืœ ืœื”ื‘ื™ืŸ ืื™ืš ื”ืžืคืชื—ื™ื ืื•ืกืคื™ื ื•ืžืฉืชืคื™ื ืืช ื”ื ืชื•ื ื™ื ืฉืœืš. ื ื•ื”ืœื™ ืคืจื˜ื™ื•ืช ื”ื ืชื•ื ื™ื ื•ืื‘ื˜ื—ืช ื”ื ืชื•ื ื™ื ืขืฉื•ื™ื™ื ืœื”ืฉืชื ื•ืช ื‘ื”ืชืื ืœืฉื™ืžื•ืฉ, ืœืื–ื•ืจ ื•ืœื’ื™ืœ ื”ืžืฉืชืžืฉ. ื”ืžืคืชื— ืกื™ืคืง ืืช ื”ืžื™ื“ืข ื”ื–ื” ื•ื”ื•ื ืขืฉื•ื™ ืœืขื“ื›ืŸ ืื•ืชื• ืžื“ื™ ืคืขื.

ืžื” ื—ื“ืฉ?

Frist Release

ืชืžื™ื›ื” ื‘ืืคืœื™ืงืฆื™ื”

ืžืกืคืจ ื˜ืœืคื•ืŸ
+94701675563
ืžื™ื“ืข ืขืœ ืžืคืชื—ื™ ื”ืืคืœื™ืงืฆื™ื”
Uththama wadu Sajith Tiyenshan
stiyenshan@gmail.com
419/1 rajakanda polpithigama Kurunegala 60620 Sri Lanka
undefined

โ€ซืขื•ื“ ืžื‘ื™ืช sajith tiyenshanโ€Žโ€

ืืคืœื™ืงืฆื™ื•ืช ื“ื•ืžื•ืช