Machine Learning

Iqukethe izikhangiso
500+
Okudawunilodiwe
Isilinganiselwa sokuqukethwe
Wonke umuntu
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini

Mayelana nalolu hlelo lokusebenza

I-Master Machine Learning ngalolu hlelo lokusebenza lwe-in-one - oludizayinelwe abafundi, ochwepheshe, nalabo abafuna ukuhlolwa abaqhudelanayo. Lolu hlelo lokusebenza lunikeza uhambo lokufunda oluhlelekile, oluhlakaniphile oluhlanganisa imiqondo eyinhloko, ama-algorithms, kanye nezinhlelo zokusebenza - konke kusekelwe kuhlelo lwezifundo olujwayelekile lwe-ML.

šŸš€ Okungaphakathi:

šŸ“˜ Iyunithi 1: Isingeniso Sokufunda Ngomshini
• Kuyini Ukufunda Ngomshini
• Izinkinga Zokufunda Ezibekwe Kahle
• Ukuklama Uhlelo Lokufunda
• Imibono Nezinkinga Ekufundeni Ngomshini

šŸ“˜ Iyunithi 2: Umqondo Wokufunda kanye Noku-oda Okujwayelekile kuya kokuthi Okuqondile
• Umqondo Wokufunda NjengoSesho
• THOLA-S I-algorithm
• Isikhala senguqulo
• Ukuchema Okuguquguqukayo

šŸ“˜ Iyunithi 3: Ukufunda Ngesihlahla Sesinqumo
• Ukumelwa Kwesihlahla Sesinqumo
• ID3 Algorithm
• I-Entropy kanye Nenzuzo Yolwazi
• Ukugcwalisa nokuthena

šŸ“˜ Iyunithi 4: Amanethiwekhi Emizwa Okwenziwayo
• I-Perceptron Algorithm
• Amanethiwekhi Ezendlalelo Eziningi
• Ukusabalalisa emuva
• Izinkinga Kudizayini Yenethiwekhi

šŸ“˜ Iyunithi 5: Ukuhlola Okuqanjiwe
• Ugqozi
• Ukulinganisa Ukunemba Kwe-hypothesis
• Izikhawu Zokuzethemba
• Ukuqhathanisa ama-algorithms wokufunda

šŸ“˜ Iyunithi 6: Ukufunda kwe-Bayesia
• I-Theorem ye-Bayes
• Amathuba amaningi kanye ne-MAP
• I-Naive Bayes Classifier
• I-Bayesian Belief Networks

šŸ“˜ Iyunithi 7: I-Computational Learning Theory
• Ukufunda Okucishe Kufane (i-PAC).
• Ubunzima besampula
• Ubukhulu be-VC
• Imodeli Eboshwe Ngephutha

šŸ“˜ Iyunithi 8: Ukufunda Okusekelwe Ezenzweni
• I-K-Nearest Neighbor Algorithm
• Ukubonisana Okusekelwe Edabeni
• Ukwehla Kwesisindo Sendawo
• Isiqalekiso sobukhulu

šŸ“˜ Iyunithi 9: I-Genetic Algorithms
• I-hypothesis Space Search
• Ama-Genetic Operators
• Imisebenzi Yokufaneleka
• Ukusetshenziswa kwama-Genetic Algorithms

šŸ“˜ Iyunithi 10: Amasethi Okufunda Emithetho
• Ama-Algorithms Okumboza Okulandelanayo
• Ukubusa Ngemva Kokuthena
• Ukufunda Imithetho Yokuhleleka Kokuqala
• Ukufunda Ukusebenzisa i-Prolog-EBG

šŸ“˜ Iyunithi 11: Ukufunda Kokuhlaziya
• Ukufunda Okusekelwe Encazelweni (EBL)
• Ukufunda kokuhlaziya kokufundisa
• Ulwazi Oluhlobene
• Ukusebenza

šŸ“˜ Iyunithi 12: Ukuhlanganisa Ukufunda Okufundisayo Nokuhlaziya
• I-Inductive Logic Programming (ILP)
• FOIL Algorithm
• Ukuhlanganisa Incazelo kanye Nokubhekisisa
• Izinhlelo zokusebenza ze-ILP

šŸ“˜ Iyunithi 13: Ukuqinisa Ukufunda
• Umsebenzi Wokufunda
• Q-Ukufunda
• Izindlela Zokwehluka Kwesikhashana
• Amasu Okuhlola

šŸ” Izici ezibalulekile:
• Isilabhasi ehlelekile enokwehlukaniswa okusekelwe esihlokweni
• Kufaka phakathi izincwadi zesilabhasi, ama-MCQ, kanye nemibuzo yokufunda okuphelele
• Isici sebhukhimakhi sokuzulazula okulula nokufinyelela okusheshayo
• Isekela ukubuka okuvundlile nokuma kwezwe ukuze kusetshenziswe kangcono
• Ilungele i-BSc, i-MSc, nokulungiselela ukuhlolwa kokuncintisana
• Idizayini engasindi nokuzulazula okulula

Kungakhathaliseki ukuthi ungumuntu osaqalayo noma uhlose ukuthuthukisa ulwazi lwakho lwe-ML, lolu hlelo lokusebenza luwumngane wakho ophelele wokuphumelela kwezemfundo nomsebenzi.

šŸ“„ Landa manje bese uqala uhambo lwakho lokufunda ngomshiniĀ ubungcweti!
Kubuyekezwe ngo-
Aga 9, 2025

Ukuphepha kwedatha

Ukuphepha kuqala ngokuqonda ukuthi onjiniyela baqoqa futhi babelane kanjani ngedatha yakho. Ubumfihlo bedatha nezinqubo zokuphepha zingahluka kuye ngokusebenzisa kwakho, isifunda, nobudala. Unjiniyela unikeze lolu lwazi futhi angalubuyekeza ngokuhamba kwesikhathi.
Ayikho idatha eyabiwe nezinkampani zangaphandle
Funda kabanzi mayelana nendlela onjiniyela abaveza ngayo ukwabelana
Ayikho idatha eqoqiwe
Funda kabanzi mayelana nokuthi onjiniyela bakuveza kanjani ukuqoqwa
Idatha ibetheliwe lapho ithunyelwa
Idatha ayikwazi ukusulwa

Yini entsha

šŸš€ What’s New in Machine Learning App v1.0

• ✨ User interface with clean and intuitive design
• šŸ”– Added bookmark feature for easy access to important topics
• šŸ“± Supports horizontal and landscape views for flexible studying
• šŸ“š Complete syllabus content, MCQs, and quizzes for better learning
• ⚔ Faster performance and smoother navigation

Perfect for students and professionals aiming to master Machine Learning. Download now and upgrade your studyĀ experience!