一行指令學Python:用機器學習掌握人工智慧(第二版) 

· 全華圖書股份有限公司
1,0
1 koment
Libër elektronik
420
Faqe

Rreth këtij libri elektronik

  現在學機器學習,正是最好的年代!

  在過去要處理資料,就要用C語言撰寫函數;在Python裡,別人已寫好了許多套件,只要像是在玩樂高積木一樣,就能完成你想要的結果。因此我會說,現在是學機器學習最好的時候,你等於是站在巨人的肩膀上學習。

  本書沒有複雜的數學,沒有複雜的程式碼,以有系統的編排,引領你進入機器學習的世界。

  我們會介紹sklearn的資料預處理;簡單線性迴歸、多元線性迴歸、羅吉斯迴歸、K最近鄰、支持向量機、決策樹、隨機森林等監督式的機器學習模型。而在非監督模型上會介紹Kmeans。

  另外,大部分的書不會強調的ColumnTransformer、管道器製作。許多書沒有解釋清楚的模型預測重要指標:正確率、精確率、召回率、混亂矩陣、綜合報告、PRC曲線、ROC曲線,我們也會一次詳細說明,讓你一手掌握。

  實例演練時會操作中英文的文字處理,並做情感分析和主題探索。還有知名的大數據資料庫,包括波斯頓房價預測、鳶尾花資料、鐵達尼號資料、威斯康辛大學醫院收集的乳癌腫瘤病患預測、電信公司客戶流失預測、信用卡盜刷預測、Newsgroup新聞群組分類、Amazon商品評論預測、Tripadvisor裡兩家航空公司和數字預測。

  最後教大家如何將深度學習的模組也包裝到sklearn。

  現在就讓我們一起學習Python,用機器學習掌握人工智慧。

本書特色

  1. 本書利用Python的sklearn套件做資料預處理。
  2. 學習主題「監督式的機器學習模型」包含:簡單線性迴歸、多元線性迴歸、羅吉斯迴歸、K最近鄰、支持向量機、決策樹、隨機森林等。
  3. 「非監督模型」介紹Kmeans。
  4. 利用ColumnTransformer、管道器設計簡潔的機器學習程式,實作各種模型的正確率、精確率、召回率、混亂矩陣、綜合報告、PRC曲線、ROC曲線等指標。

Vlerësime dhe komente

1,0
1 koment

Rreth autorit

徐聖訓  著

Vlerëso këtë libër elektronik

Na trego se çfarë mendon.

Informacione për leximin

Telefona inteligjentë dhe tabletë
Instalo aplikacionin "Librat e Google Play" për Android dhe iPad/iPhone. Ai sinkronizohet automatikisht me llogarinë tënde dhe të lejon të lexosh online dhe offline kudo që të ndodhesh.
Laptopë dhe kompjuterë
Mund të dëgjosh librat me audio të blerë në Google Play duke përdorur shfletuesin e uebit të kompjuterit.
Lexuesit elektronikë dhe pajisjet e tjera
Për të lexuar në pajisjet me bojë elektronike si p.sh. lexuesit e librave elektronikë Kobo, do të të duhet të shkarkosh një skedar dhe ta transferosh atë te pajisja jote. Ndiq udhëzimet e detajuara në Qendrën e ndihmës për të transferuar skedarët te lexuesit e mbështetur të librave elektronikë.