初探機器學習演算法(電子書)

· 碁峰資訊股份有限公司
eBook
336
Halaman

Tentang eBook ini

 熱門資料科學與機器學習演算法學習指南


本書介紹並說明資料科學領域常見且重要的機器學習演算法,這些演算法可用於監督式與非監督學習、強化學習與半監督式學習。書中所討論的演算法包括線性迴歸、logistic迴歸、SVM、樸素貝氏、k-means、隨機森林、TensorFlow與特徵工程。


你將會學到如何使用這些演算法來解決問題,以及它們的工作原理。同時也會介紹自然語言處理與推薦系統,以協助同時執行多種演算法。


最後將會知道如何挑選正確的機器學習演算法,來為你的問題進行分群、分類或迴歸。


你將學會:

• 熟悉機器學習的重要元素

• 瞭解特徵選擇與特徵工程流程

• 平衡線性迴歸的效能與誤差

• 建立資料模型,與使用各種類型的演算法來瞭解它的工作方式

• 微調SVM的參數

• 實作資料集的群聚

• 探索自然語言處理與推薦系統的概念

• 從零開始建立機器學習架構

#碁峰資訊 GOTOP Information Inc.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.