初探機器學習演算法(電子書)

· 碁峰資訊股份有限公司
ელწიგნი
336
გვერდი

ამ ელწიგნის შესახებ

 熱門資料科學與機器學習演算法學習指南


本書介紹並說明資料科學領域常見且重要的機器學習演算法,這些演算法可用於監督式與非監督學習、強化學習與半監督式學習。書中所討論的演算法包括線性迴歸、logistic迴歸、SVM、樸素貝氏、k-means、隨機森林、TensorFlow與特徵工程。


你將會學到如何使用這些演算法來解決問題,以及它們的工作原理。同時也會介紹自然語言處理與推薦系統,以協助同時執行多種演算法。


最後將會知道如何挑選正確的機器學習演算法,來為你的問題進行分群、分類或迴歸。


你將學會:

• 熟悉機器學習的重要元素

• 瞭解特徵選擇與特徵工程流程

• 平衡線性迴歸的效能與誤差

• 建立資料模型,與使用各種類型的演算法來瞭解它的工作方式

• 微調SVM的參數

• 實作資料集的群聚

• 探索自然語言處理與推薦系統的概念

• 從零開始建立機器學習架構

#碁峰資訊 GOTOP Information Inc.

შეაფასეთ ეს ელწიგნი

გვითხარით თქვენი აზრი.

ინფორმაცია წაკითხვასთან დაკავშირებით

სმარტფონები და ტაბლეტები
დააინსტალირეთ Google Play Books აპი Android და iPad/iPhone მოწყობილობებისთვის. ის ავტომატურად განახორციელებს სინქრონიზაციას თქვენს ანგარიშთან და საშუალებას მოგცემთ, წაიკითხოთ სასურველი კონტენტი ნებისმიერ ადგილას, როგორც ონლაინ, ისე ხაზგარეშე რეჟიმში.
ლეპტოპები და კომპიუტერები
Google Play-ში შეძენილი აუდიოწიგნების მოსმენა თქვენი კომპიუტერის ვებ-ბრაუზერის გამოყენებით შეგიძლიათ.
ელწამკითხველები და სხვა მოწყობილობები
ელექტრონული მელნის მოწყობილობებზე წასაკითხად, როგორიცაა Kobo eReaders, თქვენ უნდა ჩამოტვირთოთ ფაილი და გადაიტანოთ იგი თქვენს მოწყობილობაში. დახმარების ცენტრის დეტალური ინსტრუქციების მიხედვით გადაიტანეთ ფაილები მხარდაჭერილ ელწამკითხველებზე.

მეტი ავტორისგან Giuseppe Bonaccorso