類別不平衡學習:理論與算法

· 清華 98권 · 崧燁文化(崧博)
eBook
284
페이지

eBook 정보

本書首先系統地介紹了與類別不平衡學習相關的一些基礎概念及理論(第1、2章),進而在上述理論的基礎上,討論了一些主流的類別不平衡學習技術及對應演算法,具體包括樣本採樣技術(第3章)、代價敏感學習技術(第4章)、決策輸出補償技術(第5章)、集成學習技術(第6章)、主動學習技術(第7章)及一類分類技術(第8章)等。此外,也探討了樣本不平衡分佈的危害預評估技術(第9章)。最後,對該領域未來的發展方向及應用前景做出了評述與展望(第10章)。 本書可作為高等院校與研究院所電腦、自動化及相關專業研究生的課外閱讀書籍,也可供對機器學習及資料挖掘感興趣的研究人員和工程技術人員閱讀參考。

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.