Pythonによる時系列分析: 予測モデル構築と企業事例

· 株式会社 オーム社
Ebook
360
Pages
Eligible

About this ebook

時系列データを上手く活用し、ビジネス成果を生み出す!!

時系列データを上手く調理することは、これらの問に何かしら解を与えることができます。特に予測モデルを上手く活用すると、過去を振り返り、未来を予測し、現在すべきことを導きだし、成果へと繋げることができます。いくら高精度な予測モデルを手にしても、どう活用すべきかわからないと成果は生まれません。そこで本書ではどのように扱うかを、実際のデータを用いて、使い方を重点的に解説していきます。時系列分析の多くの書籍は数式等を用いて解説していますが、実務的な運用には理論よりもPython等コードで実践していくことが重要です。

なお、事例として以下を取り上げます。

・モニタリング指標の異常検知によるキャンペーン評価(自動車ディーラー)

・モニタリング指標の異常検知と要因探索(小売りチェーン)

・売上予測モデルを活用したデータドリブン販促(小売りチェーン)

・離反予測モデルによる離反対策ルールの策定(食品・法人向けビジネス)

・チャーンマネジメントのための離反時期予測(携帯電話サービス)

・LTVマネジメントのためのLTV予測(ECサイト)

・広告・販促効果を見える化し最適化するマーケティング・ミックス・モデリング(スポーツジム)


このような方におすすめ

・機械学習エンジニア

・時系列分析を扱うデータサイエンティスト、マーケター、データアナリストなど。


主要目次

第1章 ビジネスにおける時系列データ活用

第2章 Pythonのデータ分析環境の設定(JupyterLab)

第3章 時系列予測モデル構築・超入門

第4章 時系列データを使ったビジネス成果の上げ方

第5章 時系列データを活用したビジネス事例

About the author

髙橋 威知郎(たかはし いちろう)

株式会社セールスアナリティクス 代表/らくらくビジネスデータサイエンス主宰。中央省庁および情報・通信業などを経て現職。大学卒業後、一貫してデータ分析や数理モデル構築などに関する業務(研究・開発・社内活用・事業化)に従事。製造業や流通業を中心にデータサイエンス実践支援および数理モデル(予測モデル・異常検知モデル・最適化モデルなど)の開発支援、そのアドバイスなどを実施。データ分析やデータサイエンスに関する著書多数。

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.