랭체인으로 RAG 개발하기: VectorRAG & GraphRAG

· (주)도서출판길벗
5,0
1 bài đánh giá
Sách điện tử
312
Trang

Giới thiệu về sách điện tử này

VectorRAG와 GraphRAG의 차이와 구현 방법을 기본 예제로 간단히!

OpenAI와 DeepSeek의 개념과 성능 차이를 실습을 통해 직접 확인한다.

VectorRAG와 GraphRAG, 두 RAG는 서로 어떻게 다를까요? 또 각각 어떤 데이터와 시나리오에서 활용하면 좋을까요? 이 책에서는 둘의 개념 및 원리를 비교하며 쉽게 이해할 수 있게 설명합니다. 이론을 핵심 위주로 간단히 살펴보고, 랭체인을 이용해 기본적인 예제를 구현하는 방법도 알아봅니다. GraphRAG를 구현할 때는 Neo4j에 데이터를 생성하고 검색하는 여러 방법에 대해 알아볼 것입니다. VectorRAG를 구현할 때는 오픈AI 모델 뿐만 아니라 딥시크 모델도 함께 알아보고 사용해볼 것입니다. 두 모델이 어느 정도의 성능 차이를 보이는지, 딥시크 모델을 로컬에 내려받아 안전하게 실행하면서 직접 확인해볼 수 있습니다. 이 책을 통해 RAG 및 LLM의 기초를 배우고, 기본적인 구현 방법을 경험해 보세요.

Khám phá thêm

Xếp hạng và đánh giá

5,0
1 bài đánh giá

Giới thiệu tác giả

마이크로소프트에서 Data & AI Specialist로 근무 중이며, 정보관리기술사와 컴퓨터시스템응용기술사로 20년 넘게 IT 분야에서 일하고 있다. 고려대학교 대학원에서 빅데이터 및 인공지능에 대한 전문적인 연구를 진행하면서 『모두의 인공지능 기초 수학』(길벗, 2020), 『딥러닝 텐서플로 교과서』(길벗, 2021), 『딥러닝 파이토치 교과서』(길벗, 2022), 『챗GPT, 거부할 수 없는 미래』(길벗, 2023) 『랭체인으로 LLM 기반의 AI 서비스 개발하기』(길벗, 2024), 『랭체인 & 랭그래프로 AI 에이전트 개발하기』(길벗, 2025) 등을 저술했다.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.