Galois Module Structure of Algebraic Integers

· Springer Science & Business Media
Ebook
266
Pages

About this ebook

In this volume we present a survey of the theory of Galois module structure for rings of algebraic integers. This theory has experienced a rapid growth in the last ten to twelve years, acquiring mathematical depth and significance and leading to new insights also in other branches of algebraic number theory. The decisive take-off point was the discovery of its connection with Artin L-functions. We shall concentrate on the topic which has been at the centre of this development, namely the global module structure for tame Galois extensions of numberfields -in other words of extensions with trivial local module structure. The basic problem can be stated in down to earth terms: the nature of the obstruction to the existence of a free basis over the integral group ring ("normal integral basis"). Here a definitive pattern of a theory has emerged, central problems have been solved, and a stage has clearly been reached when a systematic account has become both possible and desirable. Of course, the solution of one set of problems has led to new questions and it will be our aim also to discuss some of these. We hope to help the reader early on to an understanding of the basic structure of our theory and of its central theme, and to motivate at each successive stage the introduction of new concepts and new tools.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.