A Higher-Dimensional Sieve Method: With Procedures for Computing Sieve Functions

· ·
· Cambridge Tracts in Mathematics Buch 177 · Cambridge University Press
E-Book
266
Seiten

Über dieses E-Book

Nearly a hundred years have passed since Viggo Brun invented his famous sieve, and the use of sieve methods is constantly evolving. As probability and combinatorics have penetrated the fabric of mathematical activity, sieve methods have become more versatile and sophisticated and in recent years have played a part in some of the most spectacular mathematical discoveries. Many arithmetical investigations encounter a combinatorial problem that requires a sieving argument, and this tract offers a modern and reliable guide in such situations. The theory of higher dimensional sieves is thoroughly explored, and examples are provided throughout. A Mathematica® software package for sieve-theoretical calculations is provided on the authors' website. To further benefit readers, the Appendix describes methods for computing sieve functions. These methods are generally applicable to the computation of other functions used in analytic number theory. The appendix also illustrates features of Mathematica® which aid in the computation of such functions.

Autoren-Profil

Harold G. Diamond is Professor Emeritus in the Department of Mathematics at the University of Illinois at Urbana-Champaign.

Heini Halberstam is Professor Emeritus in the Department of Mathematics at the University of Illinois at Urbana-Champaign.

William F. Galway's research focuses on analytic and computational number theory. He is a member of the American Mathematical Society and of the Mathematical Association of America.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.