Phase Transition Dynamics

· Cambridge University Press
Ebook
714
Pages

About this ebook

Phase transition dynamics is centrally important to condensed matter physics. This 2002 book treats a wide variety of topics systematically by constructing time-dependent Ginzburg-Landau models for various systems in physics, metallurgy and polymer science. Beginning with a summary of advanced statistical-mechanical theories including the renormalization group theory, the book reviews dynamical theories, and covers the kinetics of phase ordering, spinodal decomposition and nucleation in depth. The phase transition dynamics of real systems are discussed, treating interdisciplinary problems in a unified manner. Topics include supercritical fluid dynamics, stress-diffusion coupling in polymers and mesoscopic dynamics at structural phase transitions in solids. Theoretical and experimental approaches to shear flow problems in fluids are reviewed. Phase Transition Dynamics provides a comprehensive account, building on the statistical mechanics of phase transitions covered in many introductory textbooks. It will be essential reading for researchers and advanced graduate students in physics, chemistry, metallurgy and polymer science.

About the author

Akira Onuki obtained his PhD from the University of Tokyo. Since 1983, he has held a position at Kyoto University, taking up his current professorship in 1991. He has made important contributions to the study of phase transition dynamics in both fluid and solid systems.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.