Python Data Science Essentials

Packt Publishing Ltd
2
Free sample

If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills.
Read more

About the author

Alberto Boschetti is a data scientist with expertise in signal processing and statistics. He holds a PhD in telecommunication engineering and currently lives and works in London. In his work projects, he faces challenges involving natural language processing (NLP), machine learning, and probabilistic graph models everyday. He is very passionate about his job and he always tries to stay updated on the latest developments in data science technologies by attending meetups, conferences, and other events.; Luca Massaron is a data scientist and marketing research director who specializes in multivariate statistical analysis, machine learning, and customer insight, with over a decade of experience in solving real-world problems and generating value for stakeholders by applying reasoning, statistics, data mining, and algorithms. From being a pioneer of web audience analysis in Italy to achieving the rank of a top 10 Kaggler, he has always been passionate about everything regarding data and analysis and about demonstrating the potentiality of data-driven knowledge discovery to both experts and nonexperts. Favoring simplicity over unnecessary sophistication, he believes that a lot can be achieved in data science by understanding its essentials.
Read more
4.5
2 total
Loading...

Additional Information

Publisher
Packt Publishing Ltd
Read more
Published on
Apr 30, 2015
Read more
Pages
258
Read more
ISBN
9781785287893
Read more
Language
English
Read more
Genres
Computers / Enterprise Applications / Business Intelligence Tools
Computers / Programming / Open Source
Computers / Programming Languages / Python
Read more
Content Protection
This content is DRM free.
Read more
Read Aloud
Available on Android devices
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Learn the art of regression analysis with PythonAbout This BookBecome competent at implementing regression analysis in PythonSolve some of the complex data science problems related to predicting outcomesGet to grips with various types of regression for effective data analysisWho This Book Is For

The book targets Python developers, with a basic understanding of data science, statistics, and math, who want to learn how to do regression analysis on a dataset. It is beneficial if you have some knowledge of statistics and data science.

What You Will LearnFormat a dataset for regression and evaluate its performanceApply multiple linear regression to real-world problemsLearn to classify training pointsCreate an observation matrix, using different techniques of data analysis and cleaningApply several techniques to decrease (and eventually fix) any overfitting problemLearn to scale linear models to a big dataset and deal with incremental dataIn Detail

Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer.

Style and approach

This is a practical tutorial-based book. You will be given an example problem and then supplied with the relevant code and how to walk through it. The details are provided in a step by step manner, followed by a thorough explanation of the math underlying the solution. This approach will help you leverage your own data using the same techniques.

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsAbout This BookLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimize machine learning systems and algorithmsAsk – and answer – tough questions of your data with robust statistical models, built for a range of datasetsWho This Book Is For

If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.

What You Will LearnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Keras and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataIn Detail

Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success.

Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization.

Style and approach

Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Master the art of writing beautiful and powerful Python by using all of the features that Python 3.5 offersAbout This BookBecome familiar with the most important and advanced parts of the Python code styleLearn the trickier aspects of Python and put it in a structured context for deeper understanding of the languageOffers an expert's-eye overview of how these advanced tasks fit together in Python as a whole along with practical examplesWho This Book Is For

Almost anyone can learn to write working script and create high quality code but they might lack a structured understanding of what it means to be 'Pythonic'. If you are a Python programmer who wants to code efficiently by getting the syntax and usage of a few intricate Python techniques exactly right, this book is for you.

What You Will LearnCreate a virtualenv and start a new projectUnderstand how and when to use the functional programming paradigmGet familiar with the different ways the decorators can be written inUnderstand the power of generators and coroutines without digressing into lambda calculusCreate metaclasses and how it makes working with Python far easierGenerate HTML documentation out of documents and code using SphinxLearn how to track and optimize application performance, both memory and cpuUse the multiprocessing library, not just locally but also across multiple machinesGet a basic understanding of packaging and creating your own libraries/applicationsIn Detail

Python is a dynamic programming language. It is known for its high readability and hence it is often the first language learned by new programmers. Python being multi-paradigm, it can be used to achieve the same thing in different ways and it is compatible across different platforms. Even if you find writing Python code easy, writing code that is efficient, easy to maintain, and reuse is not so straightforward.

This book is an authoritative guide that will help you learn new advanced methods in a clear and contextualised way. It starts off by creating a project-specific environment using venv, introducing you to different Pythonic syntax and common pitfalls before moving on to cover the functional features in Python. It covers how to create different decorators, generators, and metaclasses. It also introduces you to functools.wraps and coroutines and how they work. Later on you will learn to use asyncio module for asynchronous clients and servers. You will also get familiar with different testing systems such as py.test, doctest, and unittest, and debugging tools such as Python debugger and faulthandler. You will learn to optimize application performance so that it works efficiently across multiple machines and Python versions. Finally, it will teach you how to access C functions with a simple Python call. By the end of the book, you will be able to write more advanced scripts and take on bigger challenges.

Style and Approach

This book is a comprehensive guide that covers advanced features of the Python language, and communicate them with an authoritative understanding of the underlying rationale for how, when, and why to use them.

Learn to build powerful machine learning models quickly and deploy large-scale predictive applicationsAbout This BookDesign, engineer and deploy scalable machine learning solutions with the power of PythonTake command of Hadoop and Spark with Python for effective machine learning on a map reduce frameworkBuild state-of-the-art models and develop personalized recommendations to perform machine learning at scaleWho This Book Is For

This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful.

What You Will LearnApply the most scalable machine learning algorithmsWork with modern state-of-the-art large-scale machine learning techniquesIncrease predictive accuracy with deep learning and scalable data-handling techniquesImprove your work by combining the MapReduce framework with SparkBuild powerful ensembles at scaleUse data streams to train linear and non-linear predictive models from extremely large datasets using a single machineIn Detail

Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy.

Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python.

Style and Approach

This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly.

Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production.

This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.

Discover how algorithms shape and impact our digital world

All data, big or small, starts with algorithms. Algorithms are mathematical equations that determine what we see—based on our likes, dislikes, queries, views, interests, relationships, and more—online. They are, in a sense, the electronic gatekeepers to our digital, as well as our physical, world. This book demystifies the subject of algorithms so you can understand how important they are business and scientific decision making.

Algorithms for Dummies is a clear and concise primer for everyday people who are interested in algorithms and how they impact our digital lives. Based on the fact that we already live in a world where algorithms are behind most of the technology we use, this book offers eye-opening information on the pervasiveness and importance of this mathematical science—how it plays out in our everyday digestion of news and entertainment, as well as in its influence on our social interactions and consumerism. Readers even learn how to program an algorithm using Python! Become well-versed in the major areas comprising algorithms Examine the incredible history behind algorithms Get familiar with real-world applications of problem-solving procedures Experience hands-on development of an algorithm from start to finish with Python

If you have a nagging curiosity about why an ad for that hammock you checked out on Amazon is appearing on your Facebook page, you'll find Algorithm for Dummies to be an enlightening introduction to this integral realm of math, science, and business.

Leverage the power of Tensorflow to design deep learning systems for a variety of real-world scenariosKey FeaturesBuild efficient deep learning pipelines using the popular Tensorflow frameworkTrain neural networks such as ConvNets, generative models, and LSTMsIncludes projects related to Computer Vision, stock prediction, chatbots and moreBook Description

TensorFlow is one of the most popular frameworks used for machine learning and, more recently, deep learning. It provides a fast and efficient framework for training different kinds of deep learning models, with very high accuracy. This book is your guide to master deep learning with TensorFlow with the help of 10 real-world projects.

TensorFlow Deep Learning Projects starts with setting up the right TensorFlow environment for deep learning. Learn to train different types of deep learning models using TensorFlow, including Convolutional Neural Networks, Recurrent Neural Networks, LSTMs, and Generative Adversarial Networks. While doing so, you will build end-to-end deep learning solutions to tackle different real-world problems in image processing, recommendation systems, stock prediction, and building chatbots, to name a few. You will also develop systems that perform machine translation, and use reinforcement learning techniques to play games.

By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow, and will be able to build and train your own deep learning models with TensorFlow confidently.

What you will learnSet up the TensorFlow environment for deep learningConstruct your own ConvNets for effective image processingUse LSTMs for image caption generationForecast stock prediction accurately with an LSTM architectureLearn what semantic matching is by detecting duplicate Quora questionsSet up an AWS instance with TensorFlow to train GANsTrain and set up a chatbot to understand and interpret human inputBuild an AI capable of playing a video game by itself –and win it!Who this book is for

This book is for data scientists, machine learning developers as well as deep learning practitioners, who want to build interesting deep learning projects that leverage the power of Tensorflow. Some understanding of machine learning and deep learning, and familiarity with the TensorFlow framework is all you need to get started with this book.

Learn the art of regression analysis with PythonAbout This BookBecome competent at implementing regression analysis in PythonSolve some of the complex data science problems related to predicting outcomesGet to grips with various types of regression for effective data analysisWho This Book Is For

The book targets Python developers, with a basic understanding of data science, statistics, and math, who want to learn how to do regression analysis on a dataset. It is beneficial if you have some knowledge of statistics and data science.

What You Will LearnFormat a dataset for regression and evaluate its performanceApply multiple linear regression to real-world problemsLearn to classify training pointsCreate an observation matrix, using different techniques of data analysis and cleaningApply several techniques to decrease (and eventually fix) any overfitting problemLearn to scale linear models to a big dataset and deal with incremental dataIn Detail

Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer.

Style and approach

This is a practical tutorial-based book. You will be given an example problem and then supplied with the relevant code and how to walk through it. The details are provided in a step by step manner, followed by a thorough explanation of the math underlying the solution. This approach will help you leverage your own data using the same techniques.

Discover how algorithms shape and impact our digital world

All data, big or small, starts with algorithms. Algorithms are mathematical equations that determine what we see—based on our likes, dislikes, queries, views, interests, relationships, and more—online. They are, in a sense, the electronic gatekeepers to our digital, as well as our physical, world. This book demystifies the subject of algorithms so you can understand how important they are business and scientific decision making.

Algorithms for Dummies is a clear and concise primer for everyday people who are interested in algorithms and how they impact our digital lives. Based on the fact that we already live in a world where algorithms are behind most of the technology we use, this book offers eye-opening information on the pervasiveness and importance of this mathematical science—how it plays out in our everyday digestion of news and entertainment, as well as in its influence on our social interactions and consumerism. Readers even learn how to program an algorithm using Python! Become well-versed in the major areas comprising algorithms Examine the incredible history behind algorithms Get familiar with real-world applications of problem-solving procedures Experience hands-on development of an algorithm from start to finish with Python

If you have a nagging curiosity about why an ad for that hammock you checked out on Amazon is appearing on your Facebook page, you'll find Algorithm for Dummies to be an enlightening introduction to this integral realm of math, science, and business.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.