An Introduction to Applied Probability

· Texts in Applied Mathematics 第 77 本图书 · Springer Nature
电子书
492

关于此电子书

This book provides the elements of probability and stochastic processes of direct interest to the applied sciences where probabilistic models play an important role, most notably in the information and communications sciences, computer sciences, operations research, and electrical engineering, but also in fields like epidemiology, biology, ecology, physics, and the earth sciences.
The theoretical tools are presented gradually, not deterring the readers with a wall of technicalities before they have the opportunity to understand their relevance in simple situations. In particular, the use of the so-called modern integration theory (the Lebesgue integral) is postponed until the fifth chapter, where it is reviewed in sufficient detail for a rigorous treatment of the topics of interest in the various domains of application listed above.
The treatment, while mathematical, maintains a balance between depth and accessibility that is suitable for theefficient manipulation, based on solid theoretical foundations, of the four most important and ubiquitous categories of probabilistic models:
  • Markov chains, which are omnipresent and versatile models in applied probability
  • Poisson processes (on the line and in space), occurring in a range of applications from ecology to queuing and mobile communications networks
  • Brownian motion, which models fluctuations in the stock market and the "white noise" of physics
  • Wide-sense stationary processes, of special importance in signal analysis and design, as well as in the earth sciences.
This book can be used as a text in various ways and at different levels of study. Essentially, it provides the material for a two-semester graduate course on probability and stochastic processes in a department of applied mathematics or for students in departments where stochastic models play an essential role. The progressive introduction of concepts and tools, along with the inclusion of numerous examples, also makes this book well-adapted for self-study.

作者简介

Pierre Brémaud graduated from the École Polytechnique and obtained his Doctorate in Mathematics from the University of Paris VI and his PhD from the department of Electrical Engineering and Computer Science at the University of California, Berkeley. He is a major contributor to the theory of stochastic processes and their applications, and has authored or co-authored several reference books and textbooks.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。