An Introduction to the Theory of Reproducing Kernel Hilbert Spaces

·
· Cambridge Studies in Advanced Mathematics Boek 152 · Cambridge University Press
E-boek
193
Pagina's

Over dit e-boek

Reproducing kernel Hilbert spaces have developed into an important tool in many areas, especially statistics and machine learning, and they play a valuable role in complex analysis, probability, group representation theory, and the theory of integral operators. This unique text offers a unified overview of the topic, providing detailed examples of applications, as well as covering the fundamental underlying theory, including chapters on interpolation and approximation, Cholesky and Schur operations on kernels, and vector-valued spaces. Self-contained and accessibly written, with exercises at the end of each chapter, this unrivalled treatment of the topic serves as an ideal introduction for graduate students across mathematics, computer science, and engineering, as well as a useful reference for researchers working in functional analysis or its applications.

Over de auteur

Vern I. Paulsen held a John and Rebecca Moores Chair in the Department of Mathematics, University of Houston, from 1996 to 2015. He is currently a Professor in the Department of Pure Mathematics at the Institute for Quantum Computing, University of Waterloo. He is the author of four books, over 100 research articles, and the winner of several teaching awards.

Mrinal Raghupathi is a Lead Quantitative Risk Analyst at the United Services Automobile Association (USAA). His research involves applications of reproducing kernel Hilbert spaces, risk analysis, and model validation.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.