Annihilating Fields of Standard Modules of $\mathfrak {sl}(2, \mathbb {C})^\sim $ and Combinatorial Identities

·
· American Mathematical Soc.
Ebook
89
Pages

About this ebook

In this volume, the authors show that a set of local admissible fields generates a vertex algebra. For an affine Lie algebra $\tilde{\mathfrak g}$, they construct the corresponding level $k$ vertex operator algebra and show that level $k$ highest weight $\tilde{\mathfrak g}$-modules are modules for this vertex operator algebra. They determine the set of annihilating fields of level $k$ standard modules and study the corresponding loop $\tilde{\mathfrak g}$-module - the set of relations that defines standard modules. In the case when $\tilde{\mathfrak g}$ is of type $A^{(1)}_1$, they construct bases of standard modules parameterized by colored partitions, and as a consequence, obtain a series of Rogers-Ramanujan type combinatorial identities.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.