Annihilating Fields of Standard Modules of $\mathfrak {sl}(2, \mathbb {C})^\sim $ and Combinatorial Identities

·
· American Mathematical Soc.
電子書
89
頁數

關於這本電子書

In this volume, the authors show that a set of local admissible fields generates a vertex algebra. For an affine Lie algebra $\tilde{\mathfrak g}$, they construct the corresponding level $k$ vertex operator algebra and show that level $k$ highest weight $\tilde{\mathfrak g}$-modules are modules for this vertex operator algebra. They determine the set of annihilating fields of level $k$ standard modules and study the corresponding loop $\tilde{\mathfrak g}$-module - the set of relations that defines standard modules. In the case when $\tilde{\mathfrak g}$ is of type $A^{(1)}_1$, they construct bases of standard modules parameterized by colored partitions, and as a consequence, obtain a series of Rogers-Ramanujan type combinatorial identities.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。