Axiomization of Passage from `Local' Structure to `Global' Object: Issue 485

· American Mathematical Society: Memoirs of the American Mathematical Society Buch 485 · American Mathematical Soc.
E-Book
107
Seiten

Über dieses E-Book

Requiring only familiarity with the terminology of categories, this book will interest algebraic geometers and students studying schemes for the first time. Feit translates the geometric intuition of local structure into a purely categorical format, filling a gap at the foundations of algebraic geometry. The main result is that, given an initial category ${\mathcal C}$ of ""local"" objects and morphisms, there is a canonical enlargement of ${\mathcal C}$ to a category ${\mathcal C}^{gl}$ which contains all 'global' objects whose local structure derives from ${\mathcal C}$ and which is functorially equivalent to the traditional notion of 'global objects'. Using this approach, Feit unifies definitions for numerous technical objects of algebraic geometry, including schemes, Tate's rigid analytic spaces, and algebraic spaces.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.