Axiomization of Passage from `Local' Structure to `Global' Object: Issue 485

· American Mathematical Society: Memoirs of the American Mathematical Society Livre 485 · American Mathematical Soc.
E-book
107
Pages

À propos de cet e-book

Requiring only familiarity with the terminology of categories, this book will interest algebraic geometers and students studying schemes for the first time. Feit translates the geometric intuition of local structure into a purely categorical format, filling a gap at the foundations of algebraic geometry. The main result is that, given an initial category ${\mathcal C}$ of ""local"" objects and morphisms, there is a canonical enlargement of ${\mathcal C}$ to a category ${\mathcal C}^{gl}$ which contains all 'global' objects whose local structure derives from ${\mathcal C}$ and which is functorially equivalent to the traditional notion of 'global objects'. Using this approach, Feit unifies definitions for numerous technical objects of algebraic geometry, including schemes, Tate's rigid analytic spaces, and algebraic spaces.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.