ROS Robotics By Example: Learning to control wheeled, limbed, and flying robots using ROS Kinetic Kame, Edition 2

·
· Packt Publishing Ltd
Ebook
484
Pages

About this ebook

Learning how to build and program your own robots with the most popular open source robotics programming frameworkAbout This BookGet to know the fundamentals of ROS and apply its concepts to real examplesLearn how to write robotics applications without getting bogged down in hardware problemsLearn to implement best practices in ROS developmentWho This Book Is For

This book is for robotic enthusiasts, researchers and professional robotics engineers who would like to build robot applications using ROS. It gives the robotics beginner and the ROS newbie an immensely practical introduction to robot building and robotics application coding. Basic knowledge of GNU/Linux and the ability to write simple applications is assumed, but no robotics knowledge, practical or theoretical, is needed.

What You Will LearnControl a robot without requiring a PhD in roboticsSimulate and control a robot armControl a flying robotSend your robot on an independent missionLearning how to control your own robots with external devicesProgram applications running on your robotExtend ROS itselfExtend ROS with the MATLAB Robotics System ToolboxIn Detail

ROS is a robust robotics framework that works regardless of hardware architecture or hardware origin. It standardizes most layers of robotics functionality from device drivers to process control and message passing to software package management.

But apart from just plain functionality, ROS is a great platform to learn about robotics itself and to simulate, as well as actually build, your first robots. This does not mean that ROS is a platform for students and other beginners; on the contrary, ROS is used all over the robotics industry to implement flying, walking and diving robots, yet implementation is always straightforward, and never dependent on the hardware itself.

ROS Robotics has been the standard introduction to ROS for potential professionals and hobbyists alike since the original edition came out; the second edition adds a gradual introduction to all the goodness available with the Kinetic Kame release.

By providing you with step-by-step examples including manipulator arms and flying robots, the authors introduce you to the new features. The book is intensely practical, with space given to theory only when absolutely necessary. By the end of this book, you will have hands-on experience on controlling robots with the best possible framework.

Style and approach

ROS Robotics By Example, Second Edition gives the robotics beginner as well as the ROS newbie an immensely practical introduction to robot building and robotics application coding. ROS translates as "robot operating system"; you will learn how to control a robot via devices and configuration files, but you will also learn how to write robot applications on the foundation of this operating system.

About the author

Carol Fairchild is the owner and principal engineer of Fairchild Robotics, a robotics development and integration company. She is a researcher at Baxter's Lab at the University of Houston–Clear Lake (UHCL) and a member of the adjunct faculty. Her research involves the use of Baxter for expanded applications. Ms. Fairchild has been involved in many aspects of robotics from her earliest days of building her first robot, a Heathkit Hero. She has an MS in computer engineering from UHCL and a BS in engineering technology from Texas A&M. Ms. Fairchild has taught middle-school robotics, coached FLL, and volunteered for FIRST Robotics in Houston.

Dr. Thomas L. Harman is the chair of the engineering division at UHCL. His research interests are control systems and applications of robotics and microprocessors. Several of his research papers with colleagues involve robotic and laser applications in medicine. In 2005, he was selected as the UHCL Distinguished Professor. He has been a judge and safety advisor for the FIRST robotic contests in Houston. Dr. Harman has authored or coauthored 18 books on subjects including microprocessors, MATLAB and Simulink applications, and the National Electrical Code. His laboratory at UHCL has a Baxter two-armed robot and several TurtleBots as well as other robots.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.