Categorical Framework for the Study of Singular Spaces

·
· American Mathematical Society: Memoirs of the American Mathematical Society Book 243 · American Mathematical Soc.
Ebook
165
Pages

About this ebook

In several areas of geometry and topology it has become apparent that the traditional covariant and contravariant functors are insufficient, particularly for dealing with geometric questions about singular spaces. We develop here a new formalism called bivariant theories. These are simultaneous generalizations of covariant group valued "homology-like" theories and contravariant ring valued "cohomology-like" theories. Most traditional pairs of covariant and contravariant theories turn out to extend to bivariant theories. A bivariant theory assigns a group not to an object but to a morphism of the original category; it has products compatible with composition of morphisms. We will also define transformations from one bivariant theory to another, called Grothendieck transformations, which generalize ordinary natural transformations. A number of standard natural transformations turn out to extend to Grothendieck transformations, and this extension has deep consequences.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.