Cellular Actuators: Modularity and Variability in Muscle-inspired Actuation

· ·
· Butterworth-Heinemann
eBook
382
페이지
적용 가능

eBook 정보

Cellular Actuators: Modularity and Variability in Muscle-Inspired Actuation describes the roles actuators play in robotics and their insufficiency in emerging new robotic applications, such as wearable devices and human co-working robots where compactness and compliance are important. Piezoelectric actuators, the topic of this book, provide advantages like displacement scale, force, reliability, and compactness, and rely on material properties to provide displacement and force as reactions to electric stimulation. The authors, renowned researchers in the area, present the fundamentals of muscle-like movement and a system-wide study that includes the design, analysis, and control of biologically inspired actuators. This book is the perfect guide for researchers and practitioners who would like to deploy this technology into their research and products. - Introduces Piezoelectric Actuators concepts in a system wide integrated approach - Acts as a single source for the design, analysis, and control of actuator arrays - Presents applications to illustrate concepts and the potential of the technology - Details the physical assembly possibilities of Piezo actuators - Presents fundamentals of bio inspired actuation - Introduces the concept of cellular actuators

저자 정보

Jun Ueda is an Associate Professor at G.W.W. School of Mechanical Engineering at the Georgia Institute of Technology. He has published over 100 peer reviewed academic papers and is an expert in system dynamics, robust control in robotics and the development of sensing and actuation devices for industry and healthcare applicationsJoshua Schultz, has received his Ph.D. from Georgia Institution of Technology in 2012, M.S. from Vanderbilt University in 2004, and B.S. from Tufts University in 2002. Dr. Schultz's research focuses primarily on soft robotics, in particular the role of small on-off cell-like units linked together by compliant material to generate motion as a whole. Because of the discretized, decentralized nature of these devices, this also involves control of quantized systems. He is also interested in properties of anthropomorphic hands and the role of compliance in grasping & manipulation.Professor H. Harry Asada is Ford Professor of Engineering and Director of the Brit and Alex d'Arbeloff Laboratory for Information Systems and Technology in the Department of Mechanical Engineering at the Massachusetts Institute of Technology. He earned his B.S. degree in Mechanical Engineering, and M.S. and Ph.D. degrees in Precision Engineering in 1973, 1975, and 1979, respectively, all from Kyoto University, Japan. He joined the M.I.T. faculty in 1982. Professor Asada teaches and conducts research in the area of robotics, bioengineering, and dynamic systems and control.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.