Classical Hypergeometric Functions and Generalizations

· ·
· American Mathematical Society
ელწიგნი
288
გვერდი

ამ ელწიგნის შესახებ

This is the first volume of a two-volume collection of recent research results related to hypergeometric functions. The second volume (Contemporary Mathematics, Volume 819) is titled Applications and $q$-Extensions of Hypergeometric Functions. This volume contains the proceedings of a minisymposium and two AMS special sessions in three conferences: Minisymposium on All Things Hypergeometric, $q$-series and Generalizations at the 16th International Symposium on Orthogonal Polynomials, Special Functions and Applications (OPSFA-16), June 13–17, 2022, Centre de Recherches Mathématiques, Montréal, Québec, Canada; AMS Special Session on Hypergeometric Functions and $q$-series at the 2022 AMS Fall Western Sectional Meeting, October 22–23, 2022, University of Utah, Salt Lake City, Utah; and the AMS Special Session on Hypergeometric Functions, $q$-series and Generalizations, at the 2023 AMS Spring Eastern Virtual Sectional Meeting, April 1–2, 2023. This book provides a sampling of current mathematical research related to the Gauss hypergeometric function, and as well, its immediate generalizations and extensions. This includes the generalized hypergeometric functions that originated with Kummer, as well as such classical special functions as Lamé and Heun functions. It also includes certain functions relevant to algebraic geometry, such as hypergeometric functions over finite fields. All research articles come with extensive bibliographies and can serve as entry points to the current literature.

შეაფასეთ ეს ელწიგნი

გვითხარით თქვენი აზრი.

ინფორმაცია წაკითხვასთან დაკავშირებით

სმარტფონები და ტაბლეტები
დააინსტალირეთ Google Play Books აპი Android და iPad/iPhone მოწყობილობებისთვის. ის ავტომატურად განახორციელებს სინქრონიზაციას თქვენს ანგარიშთან და საშუალებას მოგცემთ, წაიკითხოთ სასურველი კონტენტი ნებისმიერ ადგილას, როგორც ონლაინ, ისე ხაზგარეშე რეჟიმში.
ლეპტოპები და კომპიუტერები
Google Play-ში შეძენილი აუდიოწიგნების მოსმენა თქვენი კომპიუტერის ვებ-ბრაუზერის გამოყენებით შეგიძლიათ.
ელწამკითხველები და სხვა მოწყობილობები
ელექტრონული მელნის მოწყობილობებზე წასაკითხად, როგორიცაა Kobo eReaders, თქვენ უნდა ჩამოტვირთოთ ფაილი და გადაიტანოთ იგი თქვენს მოწყობილობაში. დახმარების ცენტრის დეტალური ინსტრუქციების მიხედვით გადაიტანეთ ფაილები მხარდაჭერილ ელწამკითხველებზე.