Algorithms with JULIA: Optimization, Machine Learning, and Differential Equations Using the JULIA Language

· Springer Nature
Ebook
439
Pages

About this ebook

This book provides an introduction to modern topics in scientific computing and machine learning, using JULIA to illustrate the efficient implementation of algorithms. In addition to covering fundamental topics, such as optimization and solving systems of equations, it adds to the usual canon of computational science by including more advanced topics of practical importance. In particular, there is a focus on partial differential equations and systems thereof, which form the basis of many engineering applications. Several chapters also include material on machine learning (artificial neural networks and Bayesian estimation).

JULIA is a relatively new programming language which has been developed with scientific and technical computing in mind. Its syntax is similar to other languages in this area, but it has been designed to embrace modern programming concepts. It is open source, and it comes with a compiler and an easy-to-use package system.

Aimed at students of applied mathematics, computer science, engineering and bioinformatics, the book assumes only a basic knowledge of linear algebra and programming.



About the author

Clemens Heitzinger is Associate Professor at the TU Vienna.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.