janv. 1991 · American Mathematical Society: Memoirs of the American Mathematical SocietyLivre 456 · American Mathematical Soc.
E-book
112
Pages
Extrait gratuit
À propos de cet e-book
In recent years, motivated by Shrkovskii's theorem, researchers have realized that a good deal of information about the dynamics of a map on the interval can be deduced from the combinatorial structure of its periodic orbits. This data can be formulated as a forcing relation between cyclic permutations (representing orbit types of periodic orbits). The present study investigates a number of new features of this relation and its generalization to multicyclic permutations (modelling finite unions of periodic orbits) and combinatorial patterns (modelling finite invariant sets). A central theme is the role of reductions and extensions of permutations. Results include: (i) a combinatorial shadowing theorem and its application to approximating permutations by cycles in the forcing relation; (ii) the distribution of different representatives of a given cycle in one (adjusted) map; (iii) characterization of the forcing-maximal permutations and patterns of fixed degree; and (iv) a calculation of the asymptotic growth rate of the maximum entropy forced by a permutation of given degree.
Série
Sciences et mathématiques
Donner une note à cet e-book
Dites-nous ce que vous en pensez.
Informations sur la lecture
Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.