Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning

· · ·
· Cambridge University Press
电子书
470

关于此电子书

Data-driven methods have become an essential part of the methodological portfolio of fluid dynamicists, motivating students and practitioners to gather practical knowledge from a diverse range of disciplines. These fields include computer science, statistics, optimization, signal processing, pattern recognition, nonlinear dynamics, and control. Fluid mechanics is historically a big data field and offers a fertile ground for developing and applying data-driven methods, while also providing valuable shortcuts, constraints, and interpretations based on its powerful connections to basic physics. Thus, hybrid approaches that leverage both methods based on data as well as fundamental principles are the focus of active and exciting research. Originating from a one-week lecture series course by the von Karman Institute for Fluid Dynamics, this book presents an overview and a pedagogical treatment of some of the data-driven and machine learning tools that are leading research advancements in model-order reduction, system identification, flow control, and data-driven turbulence closures.

作者简介

Miguel A. Mendez is Assistant Professor at the von Karman Institute for Fluid Dynamics, Belgium. He has extensively used data-driven methods for post-processing numerical and experimental data in fluid dynamics. He developed a novel multi-resolution extension of POD which has been extensively used in various flow configurations of industrial interest. His current interests include data-driven modeling and reinforcement learning.

Andrea Ianiro is Associate Professor at Universidad Carlos III de Madrid, Spain. He is a well-known expert in the field of experimental thermo-fluids. He has pioneered the use of data-driven modal analysis in heat transfer studies for impinging jets and wall-bounded flows with heat transfer. He extensively applies these techniques in combination with advanced measurement techniques such as 3D PIV and IR thermography.

Bernd R. Noack is National Talent Professor at the Harbin Institute of Technology, China. He has pioneered the automated learning of control laws and reduced-order models for real-world experiments as well as nonlinear model-based control from first principles. He is Fellow of the American Physical Society and Mendeley/Web-of-Science Highly Cited Researcher with about 300 publications including 5 books, 2 US patents and over 100 journal publications.

Steven L. Brunton is Professor at the University of Washington, USA. He has pioneered the use of machine learning to fluid mechanics in areas ranging from system identification to flow control. He has an international reputation for his excellent teaching and communication skills, which have contributed to the dissemination of his research through textbooks and online lectures.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。