Data Engineering with Python: Work with massive datasets to design data models and automate data pipelines using Python

· Packt Publishing Ltd
3,5
4 recenzie
E‑kniha
356
Počet strán

Táto e‑kniha

Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projectsKey Features
  • Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples
  • Design data models and learn how to extract, transform, and load (ETL) data using Python
  • Schedule, automate, and monitor complex data pipelines in production
Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn
  • Understand how data engineering supports data science workflows
  • Discover how to extract data from files and databases and then clean, transform, and enrich it
  • Configure processors for handling different file formats as well as both relational and NoSQL databases
  • Find out how to implement a data pipeline and dashboard to visualize results
  • Use staging and validation to check data before landing in the warehouse
  • Build real-time pipelines with staging areas that perform validation and handle failures
  • Get to grips with deploying pipelines in the production environment
Who this book is for

This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.

Hodnotenia a recenzie

3,5
4 recenzie

O autorovi

Paul Crickard authored a book on the Leaflet JavaScript module. He has been programming for over 15 years and has focused on GIS and geospatial programming for 7 years. He spent 3 years working as a planner at an architecture firm, where he combined GIS with Building Information Modeling (BIM) and CAD. Currently, he is the CIO at the 2nd Judicial District Attorney's Office in New Mexico.

Ohodnoťte túto elektronickú knihu

Povedzte nám svoj názor.

Informácie o dostupnosti

Smartfóny a tablety
Nainštalujte si aplikáciu Knihy Google Play pre AndroidiPad/iPhone. Automaticky sa synchronizuje s vaším účtom a umožňuje čítať online aj offline, nech už ste kdekoľvek.
Laptopy a počítače
Audioknihy zakúpené v službe Google Play môžete počúvať prostredníctvom webového prehliadača v počítači.
Čítačky elektronických kníh a ďalšie zariadenia
Ak chcete tento obsah čítať v zariadeniach využívajúcich elektronický atrament, ako sú čítačky e‑kníh Kobo, musíte stiahnuť príslušný súbor a preniesť ho do svojho zariadenia. Pri prenose súborov do podporovaných čítačiek e‑kníh postupujte podľa podrobných pokynov v centre pomoci.