Data Mining

· GRIN Verlag
1.0
1 条评价
电子书
43
符合条件

关于此电子书

Studienarbeit aus dem Jahr 2005 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 2,0, FernUniversität Hagen (Wirtschaftswissenschaften), Sprache: Deutsch, Abstract: In der heutigen Zeit werden Unternehmen und Institutionen, bedingt durch den technologischen Fortschritt, mit einer enormen Flut unterschiedlichster Daten konfrontiert. Das Earth Observing System der NASA mit seinen Satelliten produziert beispielsweise über 50GB Daten pro Stunde. Insbesondere für das Management enthalten diese Daten wertvolles Wissen, um Probleme aufzudecken, Produktionsabläufe zu optimieren oder bessere Zukunftsprognosen anzustellen. Resultat dieser Bemühungen um den strategischen Wettbewerbsfaktor Wissen ist eine langfristig bessere Positionierung des Unternehmens am Markt. Ohne Analyse dieser Daten steht jedoch das Wissen nicht zur Verfügung. Aufgrund der Datenmenge scheiden jedoch manuelle Analyseverfahren aus und es werden schnelle und effiziente automatisierte Analyseverfahren nötig. Mit dem Data Mining beziehungsweise dem Knowledge Discovery in Databases (KDD) existiert ein mächtiges Werkzeug, um die sehr umfangreiche Aufgabe der Wissensextraktion zu bewältigen, so daß das Interesse der Forschung und Industrie an diesem Gebiet stetig ansteigt. Anzumerken ist jedoch, daß das Data Mining ein relativ junges Forschungsgebiet ist und daher die Meinungen, was Data Mining ist und was Data Mining zugeordnet werden soll, teilweise stark differieren. In dieser Arbeit wird im ersten Kapitel ein allgemeiner Überblick über Data Mining gegeben. Dazu wird der Begriff Data Mining erläutert, gegenüber dem KDD abgegrenzt und das Data Mining bezüglich seiner Arten, Aufgaben, Ziele und Bedeutung eingeordnet. Im zweiten Kapitel werden verschiedene etablierte und neuere Data Mining-Verfahren vorgestellt. Der konkreten Ausgestaltung des Data Mining in der Praxis widmet sich Kapitel drei. Neben der Vorstellung des CRISP-DM Modells und des Ansatzes Data Mining direkt in Datenbank-Management Systemen zu integrieren, wird die Anwendung anhand von drei Beispielen: SQL/MM, SAS und SPSS vorgestellt. Im vierten Kapitel wird exemplarisch auf die vielfältigen wirtschaftlichen Anwendungsmöglichkeiten des Data Mining eingegangen. Nach einem Überblick werden die Bereiche Marketing, Handel, Bankenwesen, Verbrechensbekämpfung und Suchmaschinen genauer beleuchtet. Daß auch beim Data Mining einige Probleme auftreten, wird im Kapitel fünf betrachtet. Der Fokus liegt hier auf den Problemfeldern Softwarequalität, Datenschutz, Laufzeitverhalten und Aussagekraft der Ergebnisse. Abgeschlossen werden die Ausführungen dieser Arbeit mit einer Zusammenfassung.

评分和评价

1.0
1 条评价

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。