Data Science Using Python and R

·
· āļ‚āļēāļĒāđ‚āļ”āļĒ John Wiley & Sons
5.0
2 āļĢāļĩāļ§āļīāļ§
eBook
256
āļŦāļ™āđ‰āļē

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļš eBook āđ€āļĨāđˆāļĄāļ™āļĩāđ‰

Learn data science by doing data science!

Data Science Using Python and R will get you plugged into the world’s two most widespread open-source platforms for data science: Python and R.

Data science is hot. Bloomberg called data scientist “the hottest job in America.” Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques.

Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R.

Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naÃŊve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining.

Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars.

Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.

āļāļēāļĢāđƒāļŦāđ‰āļ„āļ°āđāļ™āļ™āđāļĨāļ°āļĢāļĩāļ§āļīāļ§

5.0
2 āļĢāļĩāļ§āļīāļ§

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļœāļđāđ‰āđāļ•āđˆāļ‡

CHANTAL D. LAROSE, PHD, is an Assistant Professor of Statistics & Data Science at Eastern Connecticut State University (ECSU). She has co-authored three books on data science and predictive analytics and helped develop data science programs at ECSU and SUNY New Paltz. Her PhD dissertation, Model-Based Clustering of Incomplete Data, tackles the persistent problem of trying to do data science with incomplete data.

DANIEL T. LAROSE, PHD, is a Professor of Data Science and Statistics and Director of the Data Science programs at Central Connecticut State University. He has published many books on data science, data mining, predictive analytics, and statistics. His consulting clients include The Economist magazine, Forbes Magazine, the CIT Group, and Microsoft.

āđƒāļŦāđ‰āļ„āļ°āđāļ™āļ™ eBook āļ™āļĩāđ‰

āđāļŠāļ”āļ‡āļ„āļ§āļēāļĄāđ€āļŦāđ‡āļ™āļ‚āļ­āļ‡āļ„āļļāļ“āđƒāļŦāđ‰āđ€āļĢāļēāļĢāļąāļšāļĢāļđāđ‰

āļ‚āđ‰āļ­āļĄāļđāļĨāđƒāļ™āļāļēāļĢāļ­āđˆāļēāļ™

āļŠāļĄāļēāļĢāđŒāļ—āđ‚āļŸāļ™āđāļĨāļ°āđāļ—āđ‡āļšāđ€āļĨāđ‡āļ•
āļ•āļīāļ”āļ•āļąāđ‰āļ‡āđāļ­āļ› Google Play Books āļŠāļģāļŦāļĢāļąāļš Android āđāļĨāļ° iPad/iPhone āđāļ­āļ›āļˆāļ°āļ‹āļīāļ‡āļ„āđŒāđ‚āļ”āļĒāļ­āļąāļ•āđ‚āļ™āļĄāļąāļ•āļīāļāļąāļšāļšāļąāļāļŠāļĩāļ‚āļ­āļ‡āļ„āļļāļ“ āđāļĨāļ°āļŠāđˆāļ§āļĒāđƒāļŦāđ‰āļ„āļļāļ“āļ­āđˆāļēāļ™āđāļšāļšāļ­āļ­āļ™āđ„āļĨāļ™āđŒāļŦāļĢāļ·āļ­āļ­āļ­āļŸāđ„āļĨāļ™āđŒāđ„āļ”āđ‰āļ—āļļāļāļ—āļĩāđˆ
āđāļĨāđ‡āļ›āļ—āđ‡āļ­āļ›āđāļĨāļ°āļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒ
āļ„āļļāļ“āļŸāļąāļ‡āļŦāļ™āļąāļ‡āļŠāļ·āļ­āđ€āļŠāļĩāļĒāļ‡āļ—āļĩāđˆāļ‹āļ·āđ‰āļ­āļˆāļēāļ Google Play āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ§āđ‡āļšāđ€āļšāļĢāļēāļ§āđŒāđ€āļ‹āļ­āļĢāđŒāđƒāļ™āļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒāđ„āļ”āđ‰
eReader āđāļĨāļ°āļ­āļļāļ›āļāļĢāļ“āđŒāļ­āļ·āđˆāļ™āđ†
āļŦāļēāļāļ•āđ‰āļ­āļ‡āļāļēāļĢāļ­āđˆāļēāļ™āļšāļ™āļ­āļļāļ›āļāļĢāļ“āđŒ e-ink āđ€āļŠāđˆāļ™ Kobo eReader āļ„āļļāļ“āļˆāļ°āļ•āđ‰āļ­āļ‡āļ”āļēāļ§āļ™āđŒāđ‚āļŦāļĨāļ”āđāļĨāļ°āđ‚āļ­āļ™āđ„āļŸāļĨāđŒāđ„āļ›āļĒāļąāļ‡āļ­āļļāļ›āļāļĢāļ“āđŒāļ‚āļ­āļ‡āļ„āļļāļ“ āđ‚āļ›āļĢāļ”āļ—āļģāļ•āļēāļĄāļ§āļīāļ˜āļĩāļāļēāļĢāļ­āļĒāđˆāļēāļ‡āļĨāļ°āđ€āļ­āļĩāļĒāļ”āđƒāļ™āļĻāļđāļ™āļĒāđŒāļŠāđˆāļ§āļĒāđ€āļŦāļĨāļ·āļ­āđ€āļžāļ·āđˆāļ­āđ‚āļ­āļ™āđ„āļŸāļĨāđŒāđ„āļ›āļĒāļąāļ‡ eReader āļ—āļĩāđˆāļĢāļ­āļ‡āļĢāļąāļš

āļĢāļēāļĒāļāļēāļĢāļ­āļ·āđˆāļ™āđ† āļ—āļĩāđˆāđ€āļ‚āļĩāļĒāļ™āđ‚āļ”āļĒ Chantal D. Larose

eBook āļ—āļĩāđˆāļ„āļĨāđ‰āļēāļĒāļāļąāļ™