Die theoretische Logik, auch mathematische oder symbolische Logik genannt, ist eine Ausdehnung der formalen Methode der Mathematik auf das Gebiet der Logik. Sie wendet für die Logik eine ähnliche Formel sprache an, wie sie zum Ausdruck mathematischer Beziehungen schon seit langem gebräuchlich ist. In der Mathematik würde es heute als eine Utopie gelten, wollte man beim Aufbau einer mathematischen Disziplin sich nur der gewöhnlichen Sprache bedienen. Die großen Fortschritte, die in der Mathematik seit der Antike gemacht worden sind, sind zum wesentlichen Teil mit dadurch bedingt, daß es gelang, einen brauchbaren und leistungsfähigen Formalismus zu finden. - Was durch die Formel sprache in der Mathematik erreicht wird, das soll auch in der theoretischen Logik durch diese erzielt werden, nämlich eine exakte, wissenschaftliche Behandlung ihres Gegenstandes. Die logischen Sachverhalte, die zwischen Urteilen, Begriffen usw. bestehen, finden ihre Darstellung durch Formeln, deren Interpretation frei ist von den Unklarheiten, die beim sprachlichen Ausdruck leicht auftreten können. Der Übergang zu logischen Folgerungen, wie er durch das Schließen geschieht, wird in seine letzten Elemente zerlegt und erscheint als formale Umgestaltung der Ausgangsformeln nach gewissen Regeln, die den Rechenregeln in der Algebra analog sind; das logische Denken findet sein Abbild in einem Logikkalkül. Dieser Kalkül macht die erfolgreiche Inangriffnahme von Problemen möglich, bei denen das rein inhaltliche Denken prinzipiell versagt. Zu diesen gehört z. B.