Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence

· Addison-Wesley Professional
電子書
416
符合資格

關於本電子書

"The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come."
Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning

Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn.

World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered.

You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms.
  • Discover what makes deep learning systems unique, and the implications for practitioners
  • Explore new tools that make deep learning models easier to build, use, and improve
  • Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more
  • Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

關於作者

Jon Krohn is the chief data scientist at untapt, a machine learning startup in New York. He leads a flourishing Deep Learning Study Group, presents the acclaimed Deep Learning with TensorFlow LiveLessons in Safari, and teaches his Deep Learning curriculum at the NYC Data Science Academy. Jon holds a doctorate in neuroscience from Oxford University and has been publishing on machine learning in leading academic journals since 2010.

Grant Beyleveld is a doctoral candidate at the Icahn School of Medicine at New York’s Mount Sinai hospital, researching the relationship between viruses and their hosts. A founding member of the Deep Learning Study Group, he holds a masters in molecular medicine and medical biochemistry from the University of Witwatersrand.

Aglaé Bassens is a Belgian artist based in Brooklyn. She studied fine arts at The Ruskin School of Drawing and Fine Art, Oxford University, and University College London’s Slade School of Fine Arts. Along with her work as an illustrator, her practice includes still life painting and murals.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。