Deep Learning Patterns and Practices

· 「Simon and Schuster」から販売
電子書籍
472
ページ
利用可能

この電子書籍について

Discover best practices, reproducible architectures, and design patterns to help guide deep learning models from the lab into production.

In Deep Learning Patterns and Practices you will learn:

Internal functioning of modern convolutional neural networks
Procedural reuse design pattern for CNN architectures
Models for mobile and IoT devices
Assembling large-scale model deployments
Optimizing hyperparameter tuning
Migrating a model to a production environment

The big challenge of deep learning lies in taking cutting-edge technologies from R&D labs through to production. Deep Learning Patterns and Practices is here to help. This unique guide lays out the latest deep learning insights from author Andrew Ferlitsch’s work with Google Cloud AI. In it, you'll find deep learning models presented in a unique new way: as extendable design patterns you can easily plug-and-play into your software projects. Each valuable technique is presented in a way that's easy to understand and filled with accessible diagrams and code samples.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Discover best practices, design patterns, and reproducible architectures that will guide your deep learning projects from the lab into production. This awesome book collects and illuminates the most relevant insights from a decade of real world deep learning experience. You’ll build your skills and confidence with each interesting example.

About the book
Deep Learning Patterns and Practices is a deep dive into building successful deep learning applications. You’ll save hours of trial-and-error by applying proven patterns and practices to your own projects. Tested code samples, real-world examples, and a brilliant narrative style make even complex concepts simple and engaging. Along the way, you’ll get tips for deploying, testing, and maintaining your projects.
What's inside

Modern convolutional neural networks
Design pattern for CNN architectures
Models for mobile and IoT devices
Large-scale model deployments
Examples for computer vision

About the reader
For machine learning engineers familiar with Python and deep learning.

About the author
Andrew Ferlitsch is an expert on computer vision, deep learning, and operationalizing ML in production at Google Cloud AI Developer Relations.

Table of Contents

PART 1 DEEP LEARNING FUNDAMENTALS
1 Designing modern machine learning
2 Deep neural networks
3 Convolutional and residual neural networks
4 Training fundamentals
PART 2 BASIC DESIGN PATTERN
5 Procedural design pattern
6 Wide convolutional neural networks
7 Alternative connectivity patterns
8 Mobile convolutional neural networks
9 Autoencoders
PART 3 WORKING WITH PIPELINES
10 Hyperparameter tuning
11 Transfer learning
12 Data distributions
13 Data pipeline
14 Training and deployment pipeline

著者について

Andrew Ferlitsch is an expert on computer vision and deep learning at Google Cloud AI Developer Relations. He was formerly a principal research scientist for 20 years at Sharp Corporation of Japan, where he amassed 115 US patents and worked on emerging technologies in telepresence, augmented reality, digital signage, and autonomous vehicles. In his present role, he reaches out to developer communities, corporations and universities, teaching deep learning and evangelizing Google's AI technologies.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。