Designing Machine Learning Systems with Python

· Packt Publishing Ltd
eBook
232
페이지

eBook 정보

Design efficient machine learning systems that give you more accurate resultsAbout This BookGain an understanding of the machine learning design processOptimize machine learning systems for improved accuracyUnderstand common programming tools and techniques for machine learningDevelop techniques and strategies for dealing with large amounts of data from a variety of sourcesBuild models to solve unique tasksWho This Book Is For

This book is for data scientists, scientists, or just the curious. To get the most out of this book, you will need to know some linear algebra and some Python, and have a basic knowledge of machine learning concepts.

What You Will LearnGain an understanding of the machine learning design processOptimize the error function of your machine learning systemUnderstand the common programming patterns used in machine learningDiscover optimizing techniques that will help you get the most from your dataFind out how to design models uniquely suited to your taskIn Detail

Machine learning is one of the fastest growing trends in modern computing. It has applications in a wide range of fields, including economics, the natural sciences, web development, and business modeling. In order to harness the power of these systems, it is essential that the practitioner develops a solid understanding of the underlying design principles.

There are many reasons why machine learning models may not give accurate results. By looking at these systems from a design perspective, we gain a deeper understanding of the underlying algorithms and the optimisational methods that are available. This book will give you a solid foundation in the machine learning design process, and enable you to build customised machine learning models to solve unique problems. You may already know about, or have worked with, some of the off-the-shelf machine learning models for solving common problems such as spam detection or movie classification, but to begin solving more complex problems, it is important to adapt these models to your own specific needs. This book will give you this understanding and more.

Style and approach

This easy-to-follow, step-by-step guide covers the most important machine learning models and techniques from a design perspective.

저자 정보

David Julian is currently working on a machine learning project with Urban Ecological Systems Ltd and Blue Smart Farms (http://www.bluesmartfarms.com.au) to detect and predict insect infestation in greenhouse crops. He is currently collecting a labeled training set that includes images and environmental data (temperature, humidity, soil moisture, and pH), linking this data to observations of infestation (the target variable), and using it to train neural net models. The aim is to create a model that will reduce the need for direct observation, be able to anticipate insect outbreaks, and subsequently control conditions. There is a brief outline of the project at http://davejulian.net/projects/ues. David also works as a data analyst, I.T. consultant, and trainer.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.