An essential introduction to discrete and computational geometry
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science.
This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems.
The essential introduction to discrete and computational geometry
Covers traditional topics as well as new and advanced material
Features numerous full-color illustrations, exercises, and unsolved problems
Suitable for sophomores in mathematics, computer science, engineering, or physics
Rigorous but accessible
An online solutions manual is available (for teachers only)
Rekenaars en tegnologie
Graderings en resensies
3,5
2 resensies
5
4
3
2
1
Meer oor die skrywer
Satyan L. Devadoss is associate professor of mathematics at Williams College. Joseph O'Rourke is the Olin Professor of Computer Science and professor of mathematics at Smith College. His books include Geometric Folding Algorithms: Linkages, Origami, Polyhedra.
Gradeer hierdie e-boek
Sê vir ons wat jy dink.
Lees inligting
Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.