An essential introduction to discrete and computational geometry
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science.
This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems.
The essential introduction to discrete and computational geometry
Covers traditional topics as well as new and advanced material
Features numerous full-color illustrations, exercises, and unsolved problems
Suitable for sophomores in mathematics, computer science, engineering, or physics
Rigorous but accessible
An online solutions manual is available (for teachers only)
Computers en technologie
Beoordelingen en reviews
3,5
2 reviews
5
4
3
2
1
Over de auteur
Satyan L. Devadoss is associate professor of mathematics at Williams College. Joseph O'Rourke is the Olin Professor of Computer Science and professor of mathematics at Smith College. His books include Geometric Folding Algorithms: Linkages, Origami, Polyhedra.
Dit e-boek beoordelen
Geef ons je mening.
Informatie over lezen
Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.