Einige Klassen Singulärer Gleichungen

· Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften Βιβλίο 46 · Springer-Verlag
ebook
353
Σελίδες

Σχετικά με το ebook

Der Grundstein fiir den Aufbau einer allgemeinen Theorie der eindimensio nalen singuliiren Integralgleichungen war in den fundamentalen Arbeiten von F. NOETHER [1] iiber Integralgleichungen mit einem Hn. BERTsohen Kern sowie von N. WIENER und E. HOPF [1] iiber Integralgleichungen mit Differenzkernen auf der Halbaohse gelegt worden. Die von NOETHER betrachteten Gleiohungen sowie die damit eng verwandten Integralgleichungen mit einem CAucHYSchen Kern werden in der Literatur gewohnlioh schlechthin als "singuliire Integral gleiohungen" bezeichnet, wiihrend fiir Integralgleichungen mit einem Differenz kern auf der Halbachse die Bezeichnung "WIENER-HoPF-Gleichungen" iiblich ist. In diesem Buch wird der Begriff "singuliire Gleiohung" als Oberbegriff fiir beide Gleichungstypen und einige andere verwendet. Die Theorie der singularen Gleichungen vom Normaltyp, an deren Entwick lung besonders die sowjetisohen Mathematiker maBgeblich beteiligt waren, kann im wesentlichen als abgeschlossen angesehen werden. Eine umfassende Darstellung dieser Theorie ist in dem Werk von N. 1. MUSCHELISCHWILI [1] (fUr Gleiohungen mit CAUCHYSchen und Hn. BERTschen Kernen und Riiume HOLDER-stetiger Funktionen) und in der Monographie von 1. Z. GOCHBERG und 1. A. FELDMAN [1] (fiir WIENER-HoPF-Gleichungen sowie einige allgemeinere singuliire Gleichungen) gegeben

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.