Induction machines (three and single phase), synchronous machines with DC excitation, with PM-excitation, and with magnetically salient rotor and a linear Pm oscillatory motor are all investigated in terms of transients, electromagnetic FEM analysis and control principles. Case studies, numerical examples, and lots of discussion of FEM results for PMSM and IM are included throughout the book.
The optimal design is treated in detail using Hooke–Jeeves and GA algorithms with case comparison studies in dedicated chapters for IM and PMSM. Numerous computer simulation programs in MATLAB® and Simulink® are available online that illustrate performance characteristics present in the chapters, and the FEM and optimal design case studies (and codes) may be used as homework to facilitate a deeper understanding of fundamental issues.
Ion Boldea is a Full Professor of Electrical Engineering at the University Politechnica of Timisoara, Romania. Professor Boldea is a Life Fellow of IEEE. He won the IEEE 2015 Nikola Tesla Award for "contributions to the design and control of rotating and linear electric machines for industry applications."
Lucian N. Tutelea is currently a Professor with the Department of Electric Engineering, Politehnica University Timisoara. His main research interests include design, modeling, and control of electric machines and drives.