Fluctuations of a Beam Wave Propagating Through a Locally Homogeneous Medium

· University of Washington, College of Engineering, Department of Electrical Engineering
eBook
27
Pages

About this eBook

General formulations for the fluctuations of a beam wave propagating through a homogeneous or locally homogeneous medium are given in terms of the spectral density of the index of refraction. The amplitude and phase correlation functions and the mean square fluctuations are derived for a homogeneous medium showing the dependence on the radial distance in the transverse plane of the beam. The amplitude and phase structure functions are derived for a locally inhomogeneous medium. The correlation functions and the structure functions do not depend only on the difference coordinate, but they are functions of the radial coordinates in the beam cross section. This particular inhomogeneity, however, is shown to be an analytic continuation of the homogeneous or locally homogeneous case. The mean square amplitude fluctuation for the Kolmogorov's locally homogeneous medium is shown to behave as a plane wave for short distance and then becomes less than that of a spherical wave, and its spectrum is shown to behave as 1/K for large K in contrast with the plane and spherical waves. The spread of the beam radius is shown to be approximately the 8/3 powers of the distance L for small distance and its increase depends on the magnitude of the index of refraction fluctuation. (Author).

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.