Forecasting commodity prices using long-short-term memory neural networks

· ·
· IFPRI Discussion Paper Część 1 · Intl Food Policy Res Inst
E-book
26
Strony
Odpowiednia

Informacje o e-booku

This paper applies a recurrent neural network (RNN) method to forecast cotton and oil prices. We show how these new tools from machine learning, particularly Long-Short Term Memory (LSTM) models, complement traditional methods. Our results show that machine learning methods fit reasonably well with the data but do not outperform systematically classical methods such as Autoregressive Integrated Moving Average (ARIMA) or the naïve models in terms of out of sample forecasts. However, averaging the forecasts from the two type of models provide better results compared to either method. Compared to the ARIMA and the LSTM, the Root Mean Squared Error (RMSE) of the average forecast was 0.21 and 21.49 percent lower, respectively, for cotton. For oil, the forecast averaging does not provide improvements in terms of RMSE. We suggest using a forecast averaging method and extending our analysis to a wide range of commodity prices.

Oceń tego e-booka

Podziel się z nami swoją opinią.

Informacje o czytaniu

Smartfony i tablety
Zainstaluj aplikację Książki Google Play na AndroidaiPada/iPhone'a. Synchronizuje się ona automatycznie z kontem i pozwala na czytanie w dowolnym miejscu, w trybie online i offline.
Laptopy i komputery
Audiobooków kupionych w Google Play możesz słuchać w przeglądarce internetowej na komputerze.
Czytniki e-booków i inne urządzenia
Aby czytać na e-papierze, na czytnikach takich jak Kobo, musisz pobrać plik i przesłać go na swoje urządzenie. Aby przesłać pliki na obsługiwany czytnik, postępuj zgodnie ze szczegółowymi instrukcjami z Centrum pomocy.