Design of Modern Heuristics: Principles and Application

Springer Science & Business Media
Free sample

Most textbooks on modern heuristics provide the reader with detailed descriptions of the functionality of single examples like genetic algorithms, genetic programming, tabu search, simulated annealing, and others, but fail to teach the underlying concepts behind these different approaches.

The author takes a different approach in this textbook by focusing on the users' needs and answering three fundamental questions: First, he tells us which problems modern heuristics are expected to perform well on, and which should be left to traditional optimization methods. Second, he teaches us to systematically design the "right" modern heuristic for a particular problem by providing a coherent view on design elements and working principles. Third, he shows how we can make use of problem-specific knowledge for the design of efficient and effective modern heuristics that solve not only small toy problems but also perform well on large real-world problems.

This book is written in an easy-to-read style and it is aimed at students and practitioners in computer science, operations research and information systems who want to understand modern heuristics and are interested in a guide to their systematic design and use.

This book is written in an easy-to-read style and it is aimed at students and practitioners in computer science, operations research and information systems who want to understand modern heuristics and are interested in a guide to their systematic design and use.

This book is written in an easy-to-read style and it is aimed at students and practitioners in computer science, operations research and information systems who want to understand modern heuristics and are interested in a guide to their systematic design and use.

Read more

About the author

Prof. Rothlauf completed his PhD thesis in 2001 at the University of Bayreuth, supervised by David E. Goldberg of the Illinois Genetic Algorithms Laboratory (IlliGAL). His particular areas of interest are optimization and heuristics, particulary in the areas of transportation, logistics and business information systems. He chaired the main international conference on evolutionary computing, ACM GECCO, in 2009, and has co-organized many related conferences and workshops; he has also acted as guest editor for related journal special issues; and he published the book "Representations for Genetic and Evolutionary Algorithms" in 2002, this was published in a second edition in 2006.

Read more
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Jul 17, 2011
Read more
Pages
267
Read more
ISBN
9783540729624
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Business & Economics / Business Mathematics
Business & Economics / Information Management
Computers / Intelligence (AI) & Semantics
Computers / Software Development & Engineering / General
Mathematics / Applied
Mathematics / Optimization
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Logistics and supply chain management deal with managing the ?ow of goods or services within a company, from suppliers to customers, and along a supply chain where companies act as suppliers as well as customers. As transportation is at the heart of logistics, the design of tra?c and transportation networks combined with the routing of vehicles and goods on the networks are important and demanding planning tasks. The in?uence of transport, logistics, and s- ply chain management on the modern economy and society has been growing steadily over the last few decades. The worldwide division of labor, the conn- tion of distributed production centers, and the increased mobility of individuals lead to an increased demand for e?cient solutions to logistics and supply chain management problems. On the company level, e?cient and e?ective logistics and supply chain management are of critical importance for a company’s s- cessanditscompetitiveadvantage. Properperformanceofthelogisticsfunctions can contribute both to lower costs and to enhanced customer service. Computational Intelligence (CI) describes a set of methods and tools that often mimic biological or physical principles to solve problems that have been di?cult to solve by classical mathematics. CI embodies neural networks, fuzzy logic, evolutionary computation, local search, and machine learning approaches. Researchersthat workinthis areaoften comefromcomputer science,operations research,or mathematics, as well as from many di?erent engineering disciplines. Popular and successful CI methods for optimization and planning problems are heuristic optimization approaches such as evolutionary algorithms, local search methods, and other types of guided search methods.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.