Fundamentals of Abstract Algebra

Β· CRC Press
Π•-ΠΊΠ½ΠΈΠ³Π°
302
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†ΠΈ
Π‘ΠΎΠΎΠ΄Π²Π΅Ρ‚Π½Π°

Π—Π° Π΅-ΠΊΠ½ΠΈΠ³Π°Π²Π°

Fundamentals of Abstract Algebra is a primary textbook for a one year first course in Abstract Algebra, but it has much more to offer besides this. The book is full of opportunities for further, deeper reading, including explorations of interesting applications and more advanced topics, such as Galois theory. Replete with exercises and examples, the book is geared towards careful pedagogy and accessibility, and requires only minimal prerequisites. The book includes a primer on some basic mathematical concepts that will be useful for readers to understand, and in this sense the book is self-contained.

Features

  • Self-contained treatments of all topics
  • Everything required for a one-year first course in Abstract Algebra, and could also be used as supplementary reading for a second course
  • Copious exercises and examples

Mark DeBonis received his PhD in Mathematics from the University of California, Irvine, USA. He began his career as a theoretical mathematician in the field of group theory and model theory, but in later years switched to applied mathematics, in particular to machine learning. He spent some time working for the US Department of Energy at Los Alamos National Lab as well as the US Department of Defense at the Defense Intelligence Agency, both as an applied mathematician of machine learning. He held a position as Associate Professor of Mathematics at Manhattan College in New York City, but later left to pursue research working for the US Department of Energy at Sandia National Laboratory as a Principal Data Analyst. His research interests include machine learning, statistics and computational algebra.

Π—Π° Π°Π²Ρ‚ΠΎΡ€ΠΎΡ‚

Mark DeBonis received his PhD in Mathematics from University of California, Irvine, USA. He began his career as a theoretical mathematician in the field of group theory and model theory, but in later years switched to applied mathematics, in particular to machine learning. He spent some time working for the US Department of Energy at Los Alamos National Lab as well as the US Department of Defense at the Defense Intelligence Agency both as an applied mathematician of machine learning. He held a position as Associate Professor of Mathematics at Manhattan College in New York City, but later left to pursue research working for the US Department of Energy at Sandia National Laboratory as a Principal Data Analyst. His research interests include machine learning, statistics and computational algebra.

ΠžΡ†Π΅Π½Π΅Ρ‚Π΅ ја Π΅-ΠΊΠ½ΠΈΠ³Π°Π²Π°

ΠšΠ°ΠΆΠ΅Ρ‚Π΅ Π½ΠΈ ΡˆΡ‚ΠΎ мислитС.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π·Π° Ρ‡ΠΈΡ‚Π°ΡšΠ΅

ΠŸΠ°ΠΌΠ΅Ρ‚Π½ΠΈ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°Ρ˜Ρ‚Π΅ ја Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°Ρ‚Π° Google Play Books Π·Π° Android ΠΈ iPad/iPhone. Автоматски сС синхронизира со смСтката ΠΈ Π²ΠΈ ΠΎΠ²ΠΎΠ·ΠΌΠΎΠΆΡƒΠ²Π° Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ онлајн ΠΈΠ»ΠΈ ΠΎΡ„Π»Π°Ρ˜Π½ ΠΊΠ°Π΄Π΅ ΠΈ Π΄Π° стС.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΠΈ
МоТС Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ ΠΊΡƒΠΏΠ΅Π½ΠΈ ΠΎΠ΄ Google Play со ΠΊΠΎΡ€ΠΈΡΡ‚Π΅ΡšΠ΅ Π½Π° Π²Π΅Π±-прСлистувачот Π½Π° ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΠΎΡ‚.
Π•-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ ΡƒΡ€Π΅Π΄ΠΈ
Π—Π° Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ Π½Π° ΡƒΡ€Π΅Π΄ΠΈ со Π΅-мастило, ΠΊΠ°ΠΊΠΎ ΡˆΡ‚ΠΎ сС Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈΡ‚Π΅ Kobo, ќС Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΏΡ€Π΅Π·Π΅ΠΌΠ΅Ρ‚Π΅ Π΄Π°Ρ‚ΠΎΡ‚Π΅ΠΊΠ° ΠΈ Π΄Π° ја ΠΏΡ€Π΅Ρ„Ρ€Π»ΠΈΡ‚Π΅ Π½Π° ΡƒΡ€Π΅Π΄ΠΎΡ‚. Π‘Π»Π΅Π΄Π΅Ρ‚Π΅ Π³ΠΈ Π΄Π΅Ρ‚Π°Π»Π½ΠΈΡ‚Π΅ упатства Π²ΠΎ Π¦Π΅Π½Ρ‚Π°Ρ€ΠΎΡ‚ Π·Π° помош Π·Π° ΠΏΡ€Π΅Ρ„Ρ€Π»Π°ΡšΠ΅ Π½Π° Π΄Π°Ρ‚ΠΎΡ‚Π΅ΠΊΠΈΡ‚Π΅ Π½Π° ΠΏΠΎΠ΄Π΄Ρ€ΠΆΠ°Π½ΠΈ Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ.